ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital-dependent electron correlation effect on the two- and three-dimensional Fermi surfaces in KFe2As2 revealed by angle-resolved photoemission spectroscopy

333   0   0.0 ( 0 )
 نشر من قبل Teppei Yoshida
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed an angle-resolved photoemission study of the hole-overdoped iron pnictide superconductor KFe2As2, which shows a low Tc of ~4 K. Most of the observed Fermi surfaces show nearly two-dimensional shapes, while a band near the Fermi level shows a strong dispersion along the kz direction and forms a small three-dimensional hole pocket centered at the Z point, as predicted by band-structure calculation. However, hole Fermi surfaces of yz and zx orbital character centered at the Gamma point of the two-dimensional Brillouin zone are smaller than those predicted by the calculation while the other hole Fermi surfaces of xy orbital character is much larger. Clover-shaped hole Fermi surfaces around the corner of the 2D BZ are also larger than those predicted by the calculation. These observations are consistent with the de Haas-van Alphen measurement and indicate orbital-dependent electron correlation effects. The effective masses of the energy bands show moderate to strong enhancement, partly due to electron correlation and partly due to energy shifts from the calculated band structure.

قيم البحث

اقرأ أيضاً

We have performed an angle-resolved photoemission study of the iron pnictide superconductor KFe2As2 with Tc 4 K. Most of the observed Fermi surfaces show almost two-dimensional shapes, while one of the quasi-particle bands near the Fermi level has a strong dispersion along the kz direction, consistent with the result of a band-structure calculation. However, hole Fermi surfaces alpha and zeta are smaller than those predicted by the calculation while other Fermi surfaces are larger. These observations are consistent with the result of a de Haas-van Alphen study and a theoretical prediction on inter-band scattering, possibly indicating many body effects on the electronic structure.
The localized-to-itinerant transition of f electrons lies at the heart of heavy-fermion physics, but has only been directly observed in single-layer Ce-based materials. Here, we report a comprehensive study on the electronic structure and nature of t he Ce 4f electrons in the heavy-fermion superconductor Ce2PdIn8, a typical n=2 CenMmIn3n+2m compound, using high-resolution and 4d-4f resonance photoemission spectroscopies. The electronic structure of this material has been studied over a wide temperature range, and hybridization between f and conduction electrons can be clearly observed to form a Kondo resonance near the Fermi level at low temperatures. The characteristic temperature of the localized-to-itinerant transition is around 120K, which is much higher than its coherence temperature Tcoh~30K.
We present an investigation on electronic structure of 1T-TiTe2 material via high-resolution angle-resolved photoemission spectroscopy (ARPES), utilizing tunable photon energy excitations. The typical semimetal-like electronic structure is observed a nd examined, where multiple hole pockets related to Te 5p bands and one electron pockets related to Ti 3d band are populated. The obtained results reveals i) a pronounced three-dimensional (3D) electronic structure of 1T-TiTe2 with typical semi-metallic features, for both the Ti 3d and the Te 5p states; ii) multiple Fermi surface (FS) sheets and complex band structure; and iii) an obvious kink in dispersion at an energy of about 18 meV below the Fermi energy, the first experimental observation of a kink structure in 1T-TiTe2, which may originate from electron-phonon coupling. These important and significant findings can help us to gain an in-depth understanding of the 3D electronic structure of semimetallic 1T- TiTe2.
We report on experimental data of the three-dimensional bulk Fermi surfaces of the layered strongly correlated Ca1.5Sr0.5RuO4 system. The measurements have been performed by means of hn-depndent bulk-sensitive soft x-ray angle-resolved photoemission technique. Our experimental data evinces the bulk Fermi surface topology at kz~0 to be qualitatively different from the one observed by surface-sensitive low-energy ARPES. Furthermore, stronger kz dispersion of the circle-like gamma Fermi surface sheet is observed compared with Sr2RuO4. Thus in the paramagnetic metal phase, Ca1.5Sr0.5RuO4 compound is found to have rather three-dimensional electronic structure.
We have investigated the electronic structure of BiS$_2$-based CeO$_{0.5}$F$_{0.5}$BiS$_2$ superconductor using polarization-dependent angle-resolved photoemission spectroscopy (ARPES), and succeeded in elucidating the orbital characters on the Fermi surfaces. In the rectangular Fermi pockets around X point, the straight portion parallel to the $k_y$ direction is dominated by Bi $6p_x$ character. The orbital polarization indicates the underlying quasi-one-dimensional electronic structure of the BiS$_2$ system. Moreover, distortions on tetragonally aligned Bi could give rise to the band Jahn-Teller effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا