ترغب بنشر مسار تعليمي؟ اضغط هنا

Preferred basis without decoherence

48   0   0.0 ( 0 )
 نشر من قبل Leonardo Vanni
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this paper is to argue that the preferred basis problem is not a real problem in measurement. We will show that, given an apparatus, among the infinite corrrelations that can be established in the final state by means of a change of basis, one and only one makes physical sense. It is the apparatus, through its interaction Hamiltonian, what selects a single basis and determines the observable to be measured, even without decoherence.

قيم البحث

اقرأ أيضاً

The random switching of measurement bases is commonly assumed to be a necessary step of quantum key distribution protocols. In this paper we show that switching is not required for coherent state continuous variable quantum key distribution. We show this via the no-switching protocol which results in higher information rates and a simpler experimental setup. We propose an optimal eavesdropping attack against this protocol, for individual Gaussian attacks, and we investigate and compare the no-switching protocol applied to the original BB84 scheme.
A quantum system with discrete and continuos evolution spectrum is studied. A final pointer basis is found, that can be defined in a presised mathematical way. This result is use to explain the quantum measurement in the system.
The hyperspherical harmonic basis is used to describe bound states in an $A$--body system. The approach presented here is based on the representation of the potential energy in terms of hyperspherical harmonic functions. Using this representation, th e matrix elements between the basis elements are simple, and the potential energy is presented in a compact form, well suited for numerical implementation. The basis is neither symmetrized nor antisymmetrized, as required in the case of identical particles; however, after the diagonalization of the Hamiltonian matrix, the eigenvectors reflect the symmetries present in it, and the identification of the physical states is possible, as it will be shown in specific cases. We have in mind applications to atomic, molecular, and nuclear few-body systems in which symmetry breaking terms are present in the Hamiltonian; their inclusion is straightforward in the present method. As an example we solve the case of three and four particles interacting through a short-range central interaction and Coulomb potential.
Quantum decoherence plays a pivotal role in the dynamical description of the quantum-to-classical transition and is the main impediment to the realization of devices for quantum information processing. This paper gives an overview of the theory and e xperimental observation of the decoherence mechanism. We introduce the essential concepts and the mathematical formalism of decoherence, focusing on the picture of the decoherence process as a continuous monitoring of a quantum system by its environment. We review several classes of decoherence models and discuss the description of the decoherence dynamics in terms of master equations. We survey methods for avoiding and mitigating decoherence and give an overview of several experiments that have studied decoherence processes. We also comment on the role decoherence may play in interpretations of quantum mechanics and in addressing foundational questions.
74 - J.R. Anglin , J.P. Paz , 1996
The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplif ying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment will survive. The phenomenology of decoherence may turn out to be significantly different.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا