ترغب بنشر مسار تعليمي؟ اضغط هنا

Functional approach to quantum decoherence and the classical final limit II: the pointer basis and the quantum measurements

37   0   0.0 ( 0 )
 نشر من قبل Rodolfo Mohamed Id Betan
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum system with discrete and continuos evolution spectrum is studied. A final pointer basis is found, that can be defined in a presised mathematical way. This result is use to explain the quantum measurement in the system.

قيم البحث

اقرأ أيضاً

48 - L. Li , A. Chia , H. M. Wiseman 2014
The dynamics for an open quantum system can be `unravelled in infinitely many ways, depending on how the environment is monitored, yielding different sorts of conditioned states, evolving stochastically. In the case of ideal monitoring these states a re pure, and the set of states for a given monitoring forms a basis (which is overcomplete in general) for the system. It has been argued elsewhere [D. Atkins et al., Europhys. Lett. 69, 163 (2005)] that the `pointer basis as introduced by Zurek and Paz [Phys. Rev. Lett 70, 1187(1993)], should be identified with the unravelling-induced basis which decoheres most slowly. Here we show the applicability of this concept of pointer basis to the problem of state stabilization for quantum systems. In particular we prove that for linear Gaussian quantum systems, if the feedback control is assumed to be strong compared to the decoherence of the pointer basis, then the system can be stabilized in one of the pointer basis states with a fidelity close to one (the infidelity varies inversely with the control strength). Moreover, if the aim of the feedback is to maximize the fidelity of the unconditioned system state with a pure state that is one of its conditioned states, then the optimal unravelling for stabilizing the system in this way is that which induces the pointer basis for the conditioned states. We illustrate these results with a model system: quantum Brownian motion. We show that even if the feedback control strength is comparable to the decoherence, the optimal unravelling still induces a basis very close to the pointer basis. However if the feedback control is weak compared to the decoherence, this is not the case.
The total correlations in a bipartite quantum system are measured by the quantum mutual information $mathcal{I}$, which consists of quantum discord and classical correlation. However, recent results in quantum information shows that coherence, which is a part of total correlation, is more general and more fundamental than discord. The role of coherence in quantum resource theories is worthwhile to investigate. We first study the relation between quantum discord and coherence by reducing the difference between them. And then, we consider the dynamics of quantum discord, classical correlations and quantum coherence under incoherent quantum channels. We discover that coherence indicate the behavior of quantum discord (classical correlation) for times $t<bar t$, and indicate the decoherence of classical correlation (quantum discord) for times $t>bar t$. What is more, the coherence frozen and decay indicate the quantum discord and classical correlation frozen and decay respectively.
One of the crucial steps in building a scalable quantum computer is to identify the noise sources which lead to errors in the process of quantum evolution. Different implementations come with multiple hardware-dependent sources of noise and decoheren ce making the problem of their detection manyfoldly more complex. We develop a randomized benchmarking algorithm which uses Weyl unitaries to efficiently identify and learn a mixture of error models which occur during the computation. We provide an efficiently computable estimate of the overhead required to compute expectation values on outputs of the noisy circuit relying only on locality of the interactions and no further assumptions on the circuit structure. The overhead decreases with the noise rate and this enables us to compute analytic noise bounds that imply efficient classical simulability. We apply our methods to ansatz circuits that appear in the Variational Quantum Eigensolver and establish an upper bound on classical simulation complexity as a function of noise, identifying regimes when they become classically efficiently simulatable.
153 - Xiaodong Yang , Xi Chen , Jun Li 2020
Quantum metrology plays a fundamental role in many scientific areas. However, the complexity of engineering entangled probes and the external noise raise technological barriers for realizing the expected precision of the to-be-estimated parameter wit h given resources. Here, we address this problem by introducing adjustable controls into the encoding process and then utilizing a hybrid quantum-classical approach to automatically optimize the controls online. Our scheme does not require any complex or intractable off-line design, and it can inherently correct certain unitary errors during the learning procedure. We also report the first experimental demonstration of this promising scheme for the task of finding optimal probes for frequency estimation on a nuclear magnetic resonance (NMR) processor. The proposed scheme paves the way to experimentally auto-search optimal protocol for improving the metrology precision.
We consider a communication scenario where classical information is encoded in an ensemble of quantum states that admit a power series expansion in a cost parameter and with the vanishing cost converge to a single zero-cost state. For a given measure ment scheme, we derive an approximate expression for mutual information in the leading order of the cost parameter. The general results are applied to selected problems in optical communication, where coherent states of light are used as input symbols and the cost is quantified as the average number of photons per symbol. We show that for an arbitrary individual measurement on phase shift keyed (PSK) symbols, the photon information efficiency is upper bounded by 2 nats of information per photon in the low-cost limit, which coincides with the conventional homodyne detection bound. The presented low-cost approximation facilitates a systematic analysis of few-symbol measurements that exhibit superadditivity of accessible information. For the binary PSK alphabet of coherent states, we present designs for two- and three-symbol measurement schemes based on linear optics, homodyning, and single photon detection that offer respectively 2.49% and 3.40% enhancement relative to individual measurements. We also show how designs for scalable superadditive measurement schemes emerge from the introduced low-cost formalism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا