ترغب بنشر مسار تعليمي؟ اضغط هنا

Is the Luttinger liquid a new state of matter?

504   0   0.0 ( 0 )
 نشر من قبل Afonin Vasily
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف V. V. Afonin




اسأل ChatGPT حول البحث

We are demonstrating that the Luttinger model with short range interaction can be treated as a type of Fermi liquid. In line with the main dogma of Landaus theory one can define a fermion excitation renormalized by interaction and show that in terms of these fermions any excited state of the system is described by free particles. The fermions are a mixture of renormalized right and left electrons. The electric charge and chirality of the Landau quasi-particle is discussed.



قيم البحث

اقرأ أيضاً

It is well established that at low energies one-dimensional (1D) fermionic systems are described by the Luttinger liquid (LL) theory, that predicts phenomena like spin-charge separation, and charge fractionalization into chiral modes. Here we show th rough the time evolution of an electron injected into a 1D t-J model, obtained with time-dependent density matrix renormalization group, that a further fractionalization of both charge and spin takes place beyond the hydrodynamic limit. Its dynamics can be understood at the supersymmetric point (J=2t) in terms of the excitations of the Bethe-Ansatz solution. Furthermore we show that fractionalization with similar characteristics extends to the whole region corresponding to a repulsive LL.
We study a system of crossed spin-gapped and gapless Luttinger liquids. We establish the existence of a stable non-Fermi liquid state with a finite-temperature,long-wavelength, isotropic electric conductivity that diverges as a power law in temperatu re $T$ as $Tto 0$. This two-dimensional system has many properties characteristic of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. This model can easily be extended to three dimensions.
We study systems of coupled spin-gapped and gapless Luttinger liquids. First, we establish the existence of a sliding Luttinger liquid phase for a system of weakly coupled parallel quantum wires, with and without disorder. It is shown that the coupli ng can {it stabilize} a Luttinger liquid phase in the presence of disorder. We then extend our analysis to a system of crossed Luttinger liquids and establish the stability of a non-Fermi liquid state: the crossed sliding Luttinger liquid phase (CSLL). In this phase the system exhibits a finite-temperature, long-wavelength, isotropic electric conductivity that diverges as a power law in temperature $T$ as $T to 0$. This two-dimensional system has many properties of a true isotropic Luttinger liquid, though at zero temperature it becomes anisotropic. An extension of this model to a three-dimensional stack exhibits a much higher in-plane conductivity than the conductivity in a perpendicular direction.
A novel method for detecting Luttinger-liquid behavior is proposed. The idea is to measure the tunneling conductance between a quantum wire and a parallel two-dimensional electron system as a function of both the potential difference between them, $V $, and an in-plane magnetic field, $B$. We show that the two-parameter dependence on $B$ and $V$ allows for a determination of the characteristic dependence on wave vector $q$ and frequency $omega$ of the {it spectral function}, $A_{rm LL}(q,omega)$, of the quantum wire. In particular, the separation of spin and charge in the Luttinger liquid should manifest itself as singularities in the $I$-$V$-characteristic. The experimental feasibility of the proposal is discussed.
155 - M. Fu , T. Imai , T.-H. Han 2015
The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of great debate. We conducted 17-O single crystal NMR measurements o f the S=1/2 kagome lattice in herbertsmithite ZnCu$_3$(OH)$_6$Cl$_2$, which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrate that the intrinsic local spin susceptibility $chi_{kagome}$ deduced from the 17-O NMR frequency shift asymptotes to zero below temperature T ~ 0.03 J, where J ~ 200 K is the Cu-Cu super-exchange interaction. Combined with the magnetic field dependence of $chi_{kagome}$ we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا