ﻻ يوجد ملخص باللغة العربية
The interference between repeated Landau-Zener transitions in a qubit swept through an avoided level crossing results in Stueckelberg oscillations in qubit magnetization. The resulting oscillatory patterns are a hallmark of the coherent strongly-driven regime in qubits, quantum dots and other two-level systems. The two-dimensional Fourier transforms of these patterns are found to exhibit a family of one-dimensional curves in Fourier space, in agreement with recent observations in a superconducting qubit. We interpret these images in terms of time evolution of the quantum phase of qubit state and show that they can be used to probe dephasing mechanisms in the qubit.
Quantum state tomography is an important tool in quantum information science for complete characterization of multi-qubit states and their correlations. Here we report a method to perform a joint simultaneous read-out of two superconducting qubits di
Superconducting qubits acting as artificial two-level atoms allow for controlled variation of the symmetry properties which govern the selection rules for single and multiphoton excitation. We spectroscopically analyze a superconducting qubit-resonat
We present measurements of single-qubit gate errors for a superconducting qubit. Results from quantum process tomography and randomized benchmarking are compared with gate errors obtained from a double pi pulse experiment. Randomized benchmarking rev
We evaluate the microwave admittance of a one-dimensional chain of fluxonium qubits coupled by shared inductors. Despite its simplicity, this system exhibits a rich phase diagram. A critical applied magnetic flux separates a homogeneous ground state
We experimentally investigate a strongly driven GaAs double quantum dot charge qubit weakly coupled to a superconducting microwave resonator. The Floquet states emerging from strong driving are probed by tracing the qubit - resonator resonance condit