ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on black hole accretion in V Puppis

62   0   0.0 ( 0 )
 نشر من قبل Thomas J. Maccarone
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In light of the recent suggestion that the nearby eclipsing binary star system V Puppis has a dark companion on a long orbit, we present the results of radio and X-ray observations of it. We find an upper limit on its radio flux of about 300 $mu$Jy and a detection of it in the X-rays with a luminosity of about 3$times10^{31}$ erg/sec, a value much lower than what had been observed in some of the low angular resolution surveys of the past. These data are in good agreement with the idea that the X-ray emission from V Puppis comes from mass transfer between the two B stars in the system, but can still accommodate the idea that the X-ray emission comes from the black hole accreting stellar wind from one or both of the B stars.

قيم البحث

اقرأ أيضاً

Up to now, most stellar-mass black holes were discovered in X-ray emitting binaries, in which the black holes are formed through a common-envelope evolu tion. Here we give evidence for the presence of a massive black hole candidate as a tertiary comp anion in the massive eclipsing binary V Puppis. We found that the orbital period of this short-period binary (P=1.45 days) shows a periodic variation while it undergoes a long-term increase. The cyclic period oscillation can be interpreted by the light-travel time effect via the presence of a third body with a mass no less than 10.4 solar mass. However, no spectral lines of the third body were discovered indicating that it is a massive black hole candidate. The black hole candidate may correspond to the weak X-ray source close to V Puppis discovered by Uhuru, Copernicus, and ROSAT satellites produced by accreting materials from the massive binary via stellar wind. The circumstellar matter with many heavy elements around this binary may be formed by the supernova explosion of the progenitor of the massive black hole. All of the observations suggest that a massive black hole is orbiting the massive close binary V Puppis with a period of 5.47 years. Meanwhile, we found the central close binary is undergoing slow mass transfer from the secondary to the primary star on a nuclear time scale of the secondary component, revealing that the system has passed through a rapid mass-transfer stage.
Stationary and axisymmetric ideal magnetohydrodynamic (MHD) accretion onto a black hole is studied analytically. The accreting plasma ejected from a plasma source with low velocity must be super-fast magnetosonic before passing through the event hori zon. We work out and apply a trans-fast magnetosonic solution without the detailed analysis of the regularity conditions at the magnetosonic point, by introducing the bending angle $beta$ of magnetic field line, which is the ratio of the toroidal and poloidal components of the magnetic field. To accrete onto a black hole, the trans-magnetosonic solution has some restrictions on $beta$, which are related to the field-aligned parameters of the MHD flows. One of the restrictions gives the boundary condition at the event horizon for the inclination of a magnetic field line. We find that this inclination is related to the energy and angular momentum transport to the black hole. Then, we discuss the spin-up/down process of a rotating black hole by cold MHD inflows in a secular evolution timescale. There are two asymptotic states for the spin evolution. One is that the angular velocity of the black hole approaches to that of the magnetic field line, and the other is that the spin-up effect by the positive angular momentum influx and the spin-down effect by the energy influx (as the mass-energy influx) are canceled. We also show that the MHD inflows prevents the evolution to the maximally rotating black hole.
167 - Rong-Jia Yang 2018
We investigate spherically symmetric, steady state, adiabatic accretion onto a Tangherlini-Reissner-Nordstrom black hole in arbitrary dimensions by using $D$-dimensional general relativity. We obtain basic equations for accretion and determine analyt ically the critical points, the critical fluid velocity, and the critical sound speed. We lay emphasis on the condition under which the accretion is possible. This condition constrains the ratio of mass to charge in a narrow limit, which is independent of dimension for large dimension. This condition may challenge the validity of the cosmic censorship conjecture since a naked singularity is eventually produced as the magnitude of charge increases compared to the mass of black hole.
Representing simultaneous black hole accretion during a merger, binary active galactic nuclei (AGNs) could provide valuable observational constraints to models of galaxy mergers and AGN triggering. High-resolution radio interferometer imaging offers a promising method to identify a large and uniform sample of binary AGNs, because it probes a generic feature of nuclear activity and is free from dust obscuration. Our previous search yielded 52 strong candidates of kpc-scale binaries over the 92 deg$^2$ of the Sloan Digital Sky Survey (SDSS) Stripe 82 area with 2-resolution Very Large Array (VLA) images. Here we present 0.3-resolution VLA 6 GHz observations for six candidates that have complete optical spectroscopy. The new data confirm the binary nature of four candidates and identify the other two as line-of-sight projections of radio structures from single AGNs. The four binary AGNs at $z sim 0.1$ reside in major mergers with projected separations of 4.2-12 kpc. Optical spectral modeling shows that their hosts have stellar masses between $10.3 < log(M_star/M_odot) < 11.5$ and velocity dispersions between $120 < sigma_star < 320$ km/s. The radio emission is compact ($<$0.4) and show steep spectrum ($-1.8 < alpha < -0.5$) at 6 GHz. The host galaxy properties and the Eddington-scaled accretion rates broadly correlate with the excitation state, similar to the general radio-AGN population at low redshifts. Our estimated binary AGN fraction indicates that simultaneous accretion occurs $>23^{+15}_{-8}$% of the time when a kpc-scale galaxy pair is detectable as a radio-AGN. The high duty cycle of the binary phase strongly suggests that major mergers can trigger and synchronize black hole accretion.
We report on an observation of the Galactic black hole candidate GRS 1739-278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising low/hard state, at a flux of ~0.3 Crab. A broad, skewed iron line and disk r eflection spectrum are revealed. Fits to the sensitive NuSTAR spectra with a number of relativistically blurred disk reflection models yield strong geometrical constraints on the disk and hard X-ray corona. Two models that explicitly assume a lamppost corona find its base to have a vertical height above the black hole of h = 5 (+7, -2) GM/c^2 and h = 18 +/-4 GM/c^2 (90% confidence errors); models that do not assume a lamppost return emissivity profiles that are broadly consistent with coronae of this size. Given that X-ray microlensing studies of quasars and reverberation lags in Seyferts find similarly compact coronae, observations may now signal that compact coronae are fundamental across the black hole mass scale. All of the models fit to GRS 1739-278 find that the accretion disk extends very close to the black hole - the least stringent constraint is r = 5 (+3,-4) GM/c^2. Only two of the models deliver meaningful spin constraints, but a = 0.8 +/-0.2 is consistent with all of the fits. Overall, the data provide especially compelling evidence of an association between compact hard X-ray coronae and the base of relativistic radio jets in black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا