ﻻ يوجد ملخص باللغة العربية
Stationary and axisymmetric ideal magnetohydrodynamic (MHD) accretion onto a black hole is studied analytically. The accreting plasma ejected from a plasma source with low velocity must be super-fast magnetosonic before passing through the event horizon. We work out and apply a trans-fast magnetosonic solution without the detailed analysis of the regularity conditions at the magnetosonic point, by introducing the bending angle $beta$ of magnetic field line, which is the ratio of the toroidal and poloidal components of the magnetic field. To accrete onto a black hole, the trans-magnetosonic solution has some restrictions on $beta$, which are related to the field-aligned parameters of the MHD flows. One of the restrictions gives the boundary condition at the event horizon for the inclination of a magnetic field line. We find that this inclination is related to the energy and angular momentum transport to the black hole. Then, we discuss the spin-up/down process of a rotating black hole by cold MHD inflows in a secular evolution timescale. There are two asymptotic states for the spin evolution. One is that the angular velocity of the black hole approaches to that of the magnetic field line, and the other is that the spin-up effect by the positive angular momentum influx and the spin-down effect by the energy influx (as the mass-energy influx) are canceled. We also show that the MHD inflows prevents the evolution to the maximally rotating black hole.
In light of the recent suggestion that the nearby eclipsing binary star system V Puppis has a dark companion on a long orbit, we present the results of radio and X-ray observations of it. We find an upper limit on its radio flux of about 300 $mu$Jy a
We report about the possibility for interacting Kerr sources to exist in two different states - black holes or naked singularities - both states characterized by the same masses and angular momenta. Another surprising discovery reported by us is that
The millimeter bump, as found in high-resolution multi-waveband observations of M87, most possibly comes from the synchrotron emission of thermal electrons in advection dominated accretion flow(ADAF). It is possible to constrain the accretion rate ne
We report on an observation of the Galactic black hole candidate GRS 1739-278 during its 2014 outburst, obtained with NuSTAR. The source was captured at the peak of a rising low/hard state, at a flux of ~0.3 Crab. A broad, skewed iron line and disk r
We investigate spherically symmetric, steady state, adiabatic accretion onto a Tangherlini-Reissner-Nordstrom black hole in arbitrary dimensions by using $D$-dimensional general relativity. We obtain basic equations for accretion and determine analyt