ترغب بنشر مسار تعليمي؟ اضغط هنا

DeWitt-Schwinger Renormalization and Vacuum Polarization in d Dimensions

190   0   0.0 ( 0 )
 نشر من قبل Robert Thompson
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Calculation of the vacuum polarization, $<phi^2(x)>$, and expectation value of the stress tensor, $<T_{mu u}(x)>$, has seen a recent resurgence, notably for black hole spacetimes. To date, most calculations of this type have been done only in four dimensions. Extending these calculations to $d$ dimensions includes $d$-dimensional renormalization. Typically, the renormalizing terms are found from Christensens covariant point splitting method for the DeWitt-Schwinger expansion. However, some manipulation is required to put the correct terms into a form that is compatible with problems of the vacuum polarization type. Here, after a review of the current state of affairs for $<phi^2(x)>$ and $<T_{mu u}(x)>$ calculations and a thorough introduction to the method of calculating $<phi^2(x)>$, a compact expression for the DeWitt-Schwinger renormalization terms suitable for use in even-dimensional spacetimes is derived. This formula should be useful for calculations of $<phi^2(x)>$ and $<T_{mu u}(x)>$ in even dimensions, and the renormalization terms are shown explicitly for four and six dimensions. Furthermore, use of the finite terms of the DeWitt-Schwinger expansion as an approximation to $<phi^2(x)>$ for certain spacetimes is discussed, with application to four and five dimensions.



قيم البحث

اقرأ أيضاً

We compute the renormalized expectation value of the square of a massless, conformally coupled, quantum scalar field on the brane of a higher-dimensional black hole. Working in the AADD brane-world scenario, the extra dimensions are flat and we assum e that the compactification radius is large compared with the size of the black hole. The four-dimensional on-brane metric corresponds to a slice through a higher-dimensional Schwarzschild-Tangherlini black hole geometry and depends on the number of bulk space-time dimensions. The quantum scalar field is in a thermal state at the Hawking temperature. An exact, closed-form expression is derived for the renormalized expectation value of the square of the quantum scalar field on the event horizon of the black hole. Outside the event horizon, this renormalized expectation value is computed numerically. The answer depends on the number of bulk space-time dimensions, with a magnitude which increases rapidly as the number of bulk space-time dimensions increases.
68 - C. Klimcik , P. Kolnik , 1994
Recently introduced classical theory of gravity in non-commutative geometry is studied. The most general (four parametric) family of $D$ dibensional static spherically symmetric spacetimes is identified and its properties are studied in detail. For w ide class of the choices of parameters, the corresponding spacetimes have the structure of asymptotically flat black holes with a smooth event horizon hiding the curvature singularity. A specific attention is devoted to the behavior of components of the metric in non-commutative direction, which are interpreted as the black hole hair.
173 - Katie E. Leonard 2012
Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obs cure. Despite being unwieldy, the latter form has a powerful appeal for those who are concerned about de Sitter invariance. We show that nothing is lost by employing the simple, noncovariant representation because there is a closed form procedure for converting its structure functions to those of the covariant representation. We also present a vastly improved technique for reading off the noncovariant structure functions from the primitive diagrams. And we discuss the issue of representing the vacuum polarization for a general metric background.
In this paper we present the equations of the evolution of the universe in $D$ spatial dimensions, as a generalization of the work of Lima citep{lima}. We discuss the Friedmann-Robertson-Walker cosmological equations in $D$ spatial dimensions for a s imple fluid with equation of state $p=omega_{D}rho$. It is possible to reduce the multidimensional equations to the equation of a point particle system subject to a linear force. This force can be expressed as an oscillator equation, anti-oscillator or a free particle equation, depending on the $k$ parameter of the spatial curvature. An interesting result is the independence on the dimension $D$ in a de Sitter evolution. We also stress the generality of this procedure with a cosmological $Lambda$ term. A more interesting result is that the reduction of the dimensionality leads naturally to an accelerated expansion of the scale factor in the plane case.
We study the foliation of a $D$-dimensional spherically symmetric black-hole spacetime with $Dge 5$ by two kinds of one-parameter family of maximal hypersurfaces: a reflection-symmetric foliation with respect to the wormhole slot and a stationary fol iation that has an infinitely long trumpet-like shape. As in the four-dimensional case, the foliations by the maximal hypersurfaces have the singularity avoidance nature irrespective of dimensionality. This indicates that the maximal slicing condition will be useful for simulating higher-dimensional black-hole spacetimes in numerical relativity. For the case of D=5, we present analytic solutions of the intrinsic metric, the extrinsic curvature, the lapse function, and the shift vector for the foliation by the stationary maximal hypersurfaces. This data will be useful for checking five-dimensional numerical relativity codes based on the moving puncture approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا