ترغب بنشر مسار تعليمي؟ اضغط هنا

Gas Phase diagnostics of Protoplanetary disk extension

133   0   0.0 ( 0 )
 نشر من قبل Barbara Ercolano Dr
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the potential of using ratios of fine structure and near-infrared forbidden line transitions of atomic carbon to diagnose protoplanetary disk extension. Using results from 2D photoionisation and radiative transfer modeling of a realistic protoplanetary disk structure irradiated by X-rays from a T Tauri star, we obtain theoretical emission maps from which we construct radial distributions of the strongest emission lines produced in the disk. We show that ratios of fine structure to near-infrared forbidden line emission of atomic carbon are especially promising to constrain the minimum size of gaseous protoplanetary disks. While theoretically viable, the method presents a number of observational difficulties that are also discussed here.

قيم البحث

اقرأ أيضاً

136 - Catherine Walsh 2016
The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry origin. The stacked methanol emission, as observed with ALMA, is spectrally resolved and detected across six velocity channels ($>3 sigma$), reaching a peak signal-to-noise of $5.5sigma$, with the kinematic pattern expected for TW~Hya. Using an appropriate disk model, a fractional abundance of $3times 10^{-12} - 4 times 10^{-11}$ (with respect to H$_2$) reproduces the stacked line profile and channel maps, with the favoured abundance dependent upon the assumed vertical location (midplane versus molecular layer). The peak emission is offset from the source position suggesting that the methanol emission has a ring-like morphology: the analysis here suggests it peaks at $approx 30$~AU reaching a column density $approx 3-6times10^{12}$~cm$^{-2}$. In the case of TW Hya, the larger (up to mm-sized) grains, residing in the inner 50~AU, may thus host the bulk of the disk ice reservoir. The successful detection of cold gas-phase methanol in a protoplanetary disk implies that the products of ice chemistry can be explored in disks, opening a window to studying complex organic chemistry during planetary system formation.
We present ALMA Band 6 observations of a complete sample of protoplanetary disks in the young (1-3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J=2-1 lines. The spatial resolution is 0.25 arcsec with a m edium 3-sigma continuum sensitivity of 0.30 mJy, corresponding to M_dust ~ 0.2 M_earth. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than mm dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission as well as the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, alpha_visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 micron continuum observations, we also calculate the mm spectral index, alpha_mm, for 70 Lupus disks; we find an anti-correlation between alpha_mm and mm flux for low-mass disks (M_dust < 5), followed by a flattening as disks approach alpha_mm = 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
The gas and dust are spatially segregated in protoplanetary disks due to the vertical settling and radial drift of large grains. A fuller accounting of the mass content and distribution in disks therefore requires spectral line observations. We exten d the modeling approach presented in Williams & Best (2014) to show that gas surface density profiles can be measured from high fidelity 13CO integrated intensity images. We demonstrate the methodology by fitting ALMA observations of the HD 163296 disk to determine a gas mass, Mgas = 0.048 solar masse, and accretion disk characteristic size Rc = 213au and gradient gamma = 0.39. The same parameters match the C18O 2--1 image and indicates an abundance ratio [13CO]/[C18O] of 700 independent of radius. To test how well this methodology can be applied to future line surveys of smaller, lower mass T Tauri disks, we create a large 13CO 2--1 image library and fit simulated data. For disks with gas masses 3-10 Jupiter masses at 150pc, ALMA observations with a resolution of 0.2-0.3 arcseconds and integration times of about 20 minutes allow reliable estimates of Rc to within about 10au and gamma to within about 0.2. Economic gas imaging surveys are therefore feasible and offer the opportunity to open up a new dimension for studying disk structure and its evolution toward planet formation.
78 - Alice S. Booth 2019
Measurements of the gas mass are necessary to determine the planet formation potential of protoplanetary disks. Observations of rare CO isotopologues are typically used to determine disk gas masses; however, if the line emission is optically thick th is will result in an underestimated disk mass. With ALMA we have detected the rarest stable CO isotopologue, 13C17O, in a protoplanetary disk for the first time. We compare our observations with the existing detections of 12CO, 13CO, C18O and C17O in the HD163296 disk. Radiative transfer modelling using a previously benchmarked model, and assuming interstellar isotopic abundances, significantly underestimates the integrated intensity of the 13C17O J=3-2 line. Reconciliation between the observations and the model requires a global increase in CO gas mass by a factor of 3.5. This is a factor of 2-6 larger than previous gas mass estimates using C18O. We find that C18O emission is optically thick within the CO snow line, while the 13C17O emission is optically thin and is thus a robust tracer of the bulk disk CO gas mass.
We study atomic line diagnostics of the inner regions of protoplanetary disks with our model of X-ray irradiated disk atmospheres which was previously used to predict observable levels of the NeII and NeIII fine-structure transitions at 12.81 and 15. 55mum. We extend the X-ray ionization theory to sulfur and calculate the fraction of sulfur in S, S+, S2+ and sulfur molecules. For the DAlessio generic T Tauri star disk, we find that the SI fine-structure line at 25.55mum is below the detection level of the Spitzer Infrared Spectrometer (IRS), in large part due to X-ray ionization of atomic S at the top of the atmosphere and to its incorporation into molecules close to the mid-plane. We predict that observable fluxes of the SII 6718/6732AA forbidden transitions are produced in the upper atmosphere at somewhat shallower depths and smaller radii than the neon fine-structure lines. This and other forbidden line transitions, such as the OI 6300/6363AA and the CI 9826/9852AA lines, serve as complementary diagnostics of X-ray irradiated disk atmospheres. We have also analyzed the potential role of the low-excitation fine-structure lines of CI, CII, and OI, which should be observable by SOFIA and Herschel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا