ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared Imaging Polarimetry of S106 Cluster-Forming Region with SIRPOL

119   0   0.0 ( 0 )
 نشر من قبل Hiro Saito
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of wide-field JHKs polarimetry toward the HII region S106 using the IRSF (Infrared Survey Facility) telescope. Our polarimetry data revealed an extended (up to ~ 5) polarized nebula over S106. We confirmed the position of the illuminating source of most of the nebula as consistent with S106 IRS4 through an analysis of polarization vectors. The bright portion of the polarized intensity is consistent with the red wing component of the molecular gas. Diffuse polarized intensity emission is distributed along the north--south molecular gas lanes. We found the interaction region between the radiation from S106 IRS4 and the dense gas. In addition, we also discovered two small polarization nebulae, SIRN1 and SIRN2, associated with a young stellar objects (YSO). Aperture polarimetry of point-like sources in this region was carried out for the first time. The regional magnetic field structures were derived using point-like source aperture polarimetry, and the magnetic field structure position angle around the cluster region in S106 was found to be ~ 120$arcdeg$. The magnetic fields in the cluster region, however, have three type position angles: ~ 20$arcdeg$, ~ 80$arcdeg$, and ~ 120$arcdeg$. The present magnetic field structures are consistent with results obtained by submillimeter continuum observations. We found that the magnetic field direction in the dense gas region is not consistent with that of the low density gas region.



قيم البحث

اقرأ أيضاً

We have conducted deep JHKs imaging polarimetry of a ~8 x 8 area of the NGC 2071 star forming region. Our polarization data have revealed various infrared reflection nebulae (IRNe) associated with the central IR young star cluster NGC2071IR and ident ified their illuminating sources. There are at least 4 IRNe in NGC2071IR and several additional IRNe are identified around nearby young stars in the same field-of-view. Each illuminating source coincides with a known near-IR source except for IRS3, which is only a part of IRN2 and is illuminated by the radio source 1c. Aperture polarimetry of each cluster source is used to detect unresolved circumstellar disk/outflow systems. Aperture polarimetry of the other point-like sources within the field is made in this region for the first time. The magnetic field structures (from ~1 pc down to ~0.1 pc) are derived using both aperture polarimetry of the point-like sources and imaging polarimetry of the shocked H2 emission that is seen as the dominant knotty nebulae in the Ks band image; they are both of dichroic origin and the derived field directions are consistent with each other. The magnetic field direction projected on the sky is also consistent with that inferred from the 850 micron thermal continuum emission polarimetry of the central 0.2 pc region, but running roughly perpendicular (~75 degrees) to the direction of the large scale outflow. We argue that the field strength is too weak to align the outflow in the large scale field direction via magnetic braking.
By performing non-masked polarization imaging with Subaru/HiCIAO, polarized scattered light from the inner region of the disk around the GG Tau A system was successfully detected in the $H$ band with a spatial resolution of approximately 0.07$arcsec$ , revealing the complicated inner disk structures around this young binary. This paper reports the observation of an arc-like structure to the north of GG Tau Ab and part of a circumstellar structure that is noticeable around GG Tau Aa extending to a distance of approximately 28 AU from the primary star. The speckle noise around GG Tau Ab constrains its disk radius to <13 AU. Based on the size of the circumbinary ring and the circumstellar disk around GG Tau Aa, the semi-major axis of the binarys orbit is likely to be 62 AU. A comparison of the present observations with previous ALMA and near-infrared (NIR) H$_2$ emission observations suggests that the north arc could be part of a large streamer flowing from the circumbinary ring to sustain the circumstellar disks. According to the previous studies, the circumstellar disk around GG Tau Aa has enough mass and can sustain itself for a duration sufficient for planet formation; thus, our study indicates that planets can form within close (separation $lesssim$ 100 AU) young binary systems.
645 - D. Batcheldor 2008
The findings of a nine orbit calibration plan carried out during HST Cycle 15, to fully determine the NICMOS camera 2 (2.0 micron) polarization calibration to high accuracy, are reported. Recently Ueta et al. and Batcheldor et al. have suggested that NICMOS possesses a residual instrumental polarization at a level of 1.2-1.5%. This would completely inhibit the data reduction in a number of GO programs, and hamper the ability of the instrument to perform high accuracy polarimetry. We obtained polarimetric calibration observations of three polarimetric standards at three spacecraft roll angles separated by ~60deg. Combined with archival data, these observations were used to characterize the residual instrumental polarization in order for NICMOS to reach its full potential of accurate imaging polarimetry at p~1%. Using these data, we place an 0.6% upper limit on the instrumental polarization and calculate values of the parallel transmission coefficients that reproduce the ground-based results for the polarimetric standards. The uncertainties associated with the parallel transmission coefficients, a result of the photometric repeatability of the observations, are seen to dominate the accuracy of p and theta. However, the updated coefficients do allow imaging polarimetry of targets with p~1.0% at an accuracy of +/-0.6% and +/-15deg. This work enables a new caliber of science with HST.
Imaging polarimetry is a useful tool to reveal the 3D structure of dust distributions and to localize embedded young stellar objects. We present maps of the linear polarization at 2.2 micron for three ultra-compact HII regions (G192.16-3.82, G331.28- 0.19, G339.88-1.26) and the methanol maser source G305.21+0.21. From the polarization maps, we draw conclusions on the morphology of these objects and the presence of luminous illuminating sources.
We conducted near-infrared (JHKs) imaging polarimetry toward the infrared dark cloud (IRDC) M17 SWex, including almost all of the IRDC filaments as well as its outskirts, with the polarimeter SIRPOL on the IRSF 1.4 m telescope. We revealed the magnet ic fields of M17 SWex with our polarization-detected sources that were selected by some criteria based on their near-IR colors and the column densities toward them, which were derived from the Herschel data. The selected sources indicate not only that the ordered magnetic field is perpendicular to the cloud elongation as a whole, but also that at both ends of the elongated cloud the magnetic field appears to bent toward its central part, i.e., large-scale hourglass-shaped magnetic field perpendicular to the cloud elongation. In addition to this general trend, the elongations of the filamentary subregions within the dense parts of the cloud appear to be mostly perpendicular to their local magnetic fields, while the magnetic fields of the outskirts appear to follow the thin filaments that protrude from the dense parts. The magnetic strengths were estimated to be ~70-300 microG in the subregions, of which lengths and average number densities are ~3-9 pc and ~2-7x10^3 cm^{-3}, respectively, by the Davis-Chandrasekhar-Fermi method with the angular dispersion of our polarization data and the velocity dispersion derived from the C^{18}O (J=1-0) data obtained by the Nobeyama 45 m telescope. These field configurations and our magnetic stability analysis of the subregions imply that the magnetic field have controlled the formation/evolution of the M17 SWex cloud.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا