ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared Imaging Polarimetry toward M17 SWex

231   0   0.0 ( 0 )
 نشر من قبل Koji Sugitani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We conducted near-infrared (JHKs) imaging polarimetry toward the infrared dark cloud (IRDC) M17 SWex, including almost all of the IRDC filaments as well as its outskirts, with the polarimeter SIRPOL on the IRSF 1.4 m telescope. We revealed the magnetic fields of M17 SWex with our polarization-detected sources that were selected by some criteria based on their near-IR colors and the column densities toward them, which were derived from the Herschel data. The selected sources indicate not only that the ordered magnetic field is perpendicular to the cloud elongation as a whole, but also that at both ends of the elongated cloud the magnetic field appears to bent toward its central part, i.e., large-scale hourglass-shaped magnetic field perpendicular to the cloud elongation. In addition to this general trend, the elongations of the filamentary subregions within the dense parts of the cloud appear to be mostly perpendicular to their local magnetic fields, while the magnetic fields of the outskirts appear to follow the thin filaments that protrude from the dense parts. The magnetic strengths were estimated to be ~70-300 microG in the subregions, of which lengths and average number densities are ~3-9 pc and ~2-7x10^3 cm^{-3}, respectively, by the Davis-Chandrasekhar-Fermi method with the angular dispersion of our polarization data and the velocity dispersion derived from the C^{18}O (J=1-0) data obtained by the Nobeyama 45 m telescope. These field configurations and our magnetic stability analysis of the subregions imply that the magnetic field have controlled the formation/evolution of the M17 SWex cloud.



قيم البحث

اقرأ أيضاً

Using wide-field $^{13}$CO ($J=1-0$) data taken with the Nobeyama 45-m telescope, we investigate cloud structures of the infrared dark cloud complex in M17 with SCIMES. In total, we identified 118 clouds that contain 11 large clouds with radii larger than 1 pc. The clouds are mainly distributed in the two representative velocity ranges of 10 $-$ 20 km s$^{-1}$ and 30 $-$ 40 km s$^{-1}$. By comparing with the ATLASGAL catalog, we found that the majority of the $^{13}$CO clouds with 10 $-$ 20 km s$^{-1}$ and 30 $-$ 40 km s$^{-1}$ are likely located at distances of 2 kpc (Sagittarius arm) and 3 kpc (Scutum arm), respectively. Analyzing the spatial configuration of the identified clouds and their velocity structures, we attempt to reveal the origin of the cloud structure in this region. Here we discuss three possibilities: (1) overlapping with different velocities, (2) cloud oscillation, and (3) cloud-cloud collision. From the position-velocity diagrams, we found spatially-extended faint emission between $sim$ 20 km s$^{-1}$ and $sim$ 35 km s$^{-1}$, which is mainly distributed in the spatially-overlapped areas of the clouds. We also found that in some areas where clouds with different velocities overlapped, the magnetic field orientation changes abruptly. The distribution of the diffuse emission in the position-position-velocity space and the bending magnetic fields appear to favor the cloud-cloud collision scenario compared to other scenarios. In the cloud-cloud collision scenario, we propose that two $sim$35 km s$^{-1}$ foreground clouds are colliding with clouds at $sim$20 km s$^{-1}$ with a relative velocity of 15 km s$^{-1}$. These clouds may be substructures of two larger clouds having velocities of $sim$ 35 km s$^{-1}$ ($gtrsim 10^3 $ M$_{odot}$) and $sim$ 20 km s$^{-1}$ ($gtrsim 10^4 $ M$_{odot}$), respectively.
Near-infrared polarimetry of point sources reveals the presence of a toroidal magnetic field in the central 20 x 20 region of our Galaxy. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we have obtain ed a polarization originating from magnetically aligned dust grains at the central region of our Galaxy of at most 1-2 kpc. The derived direction of the magnetic field is in good agreement with that obtained from far-infrared/submillimeter observations, which detect polarized thermal emission from dust in the molecular clouds at the Galactic center. Our results show that by subtracting foreground components, near-infrared polarimetry allows investigation of the magnetic field structure at the Galactic center. The distribution of the position angles shows a peak at around 20deg, nearly parallel to the direction of the Galactic plane, suggesting a toroidal magnetic configuration.
We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud G014.225$-$00.506, which forms the central regions of a larger cloud complex known as the M17 sou thwest extension (M17 SWex). In addition to the rich population of protostars and young stellar objects with dusty circumstellar disks revealed by Spitzer Space Telescope archival data, we discover a population of X-ray-emitting, intermediate-mass pre--main-sequence stars (IMPS) that lack infrared excess emission from circumstellar disks. We model the infrared spectral energy distributions of this source population to measure its mass function and place new constraints on the inner dust disk destruction timescales for 2-8 $M_{odot}$ stars. We also place a lower limit on the star formation rate (SFR) and find that it is quite high ($dot{M}ge 0.007~M_{odot}$ yr$^{-1}$), equivalent to several Orion Nebula Clusters in G14.225$-$0.506 alone, and likely accelerating. The cloud complex has not produced a population of massive, O-type stars commensurate with its SFR. This absence of very massive (${ge}20~M_{odot}$) stars suggests that either (1) M17 SWex is an example of a distributed mode of star formation that will produce a large OB association dominated by intermediate-mass stars but relatively few massive clusters, or (2) the massive cores are still in the process of accreting sufficient mass to form massive clusters hosting O stars.
We have carried out near-infrared polarimetry toward the boundary of the Central Molecular Zone, in the field of (-1.4 deg $lesssim l lesssim$ -0.3 deg and 1.0 deg $lesssim l lesssim$ 2.9 deg, $|b|lesssim$ 0.1 deg), using the near-infrared polarimetr ic camera SIRPOL on the 1.4 m Infrared Survey Facility telescope. We have selected 112 intrinsically polarized sources on the basis of the estimate of interstellar polarization on Stokes $Q/I-U/I$ planes. The selected sources are brighter than $K_S=14.5$ mag and have polarimetric uncertainty $delta P<1,%$. Ten of these distinctive polarized sources are fit well with spectral energy distributions of young stellar objects when using the photometry in the archive of the Spitzer Space Telescope mid-infrared data. However, many sources have spectral energy distributions of normal stars suffering heavy interstellar extinction; these might be stars behind dark clouds. Due to the small number of distinctive polarized sources and candidates of young stellar object, we cannot judge if there is a decline of them outside the Central Molecular Zone. Many of massive candidates of young stellar object in the literature have only small intrinsic polarization. This might suggest that their masses are 4-15 M$_{{rm sun}}$, whose intrinsic polarization has been expected to be small.
We report on the results of new simulations of near-infrared (NIR) observations of the Sagittarius A* (Sgr A*) counterpart associated with the super-massive black hole at the Galactic Center. The observations have been carried out using the NACO adap tive optics (AO) instrument at the European Southern Observatorys Very Large Telescope and CIAO NIR camera on the Subaru telescope (13 June 2004, 30 July 2005, 1 June 2006, 15 May 2007, 17 May 2007 and 28 May 2008). We used a model of synchrotron emission from relativistic electrons in the inner parts of an accretion disk. The relativistic simulations have been carried out using the Karas-Yaqoob (KY) ray-tracing code. We probe the existence of a correlation between the modulations of the observed flux density light curves and changes in polarimetric data. Furthermore, we confirm that the same correlation is also predicted by the hot spot model. Correlations between intensity and polarimetric parameters of the observed light curves as well as a comparison of predicted and observed light curve features through a pattern recognition algorithm result in the detection of a signature of orbiting matter under the influence of strong gravity. This pattern is detected statistically significant against randomly polarized red noise. Expected results from future observations of VLT interferometry like GRAVITY experiment are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا