ﻻ يوجد ملخص باللغة العربية
We analyze a system-level model for lytic repression of lambda-phage in E. coli using reliability theory, showing that the repressor circuit comprises 4 redundant components whose failure mode is prophage induction. Our model reflects the specific biochemical mechanisms involved in regulation, including long-range cooperative binding, and its detailed predictions for prophage induction in E. coli under ultra-violet radiation are in good agreement with experimental data.
MicroRNAs can affect the protein translation using nine mechanistically different mechanisms, including repression of initiation and degradation of the transcript. There is a hot debate in the current literature about which mechanism and in which sit
We present herein an extension of an algebraic statistical method for inferring biochemical reaction networks from experimental data, proposed recently in [3]. This extension allows us to analyze reaction networks that are not necessarily full-dimens
We investigate the dynamics of the heterodimer autorepression loop (HAL), a small genetic module in which a protein A acts as an auto-repressor and binds to a second protein B to form a AB dimer. For suitable values of the rate constants the HAL prod
The novelty of new human coronavirus COVID-19/SARS-CoV-2 and the lack of effective drugs and vaccines gave rise to a wide variety of strategies employed to fight this worldwide pandemic. Many of these strategies rely on the repositioning of existing
Circadian (~24hr) clocks are self-sustained endogenous oscillators with which organisms keep track of daily and seasonal time. Circadian clocks frequently rely on interlocked transcriptional- translational feedback loops to generate rhythms that are