ترغب بنشر مسار تعليمي؟ اضغط هنا

Instability of the Perturbation Theoretical Chromodynamic Vacuum

240   0   0.0 ( 0 )
 نشر من قبل Orlando Panella
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The standard model of strong interactions invokes the quantum chromodynamics (QCD) of quarks and gluons interacting within a fluid. At sufficiently small length scales, the effective interactions between the color charged particles within the fluid are thought to be weak. Short distance asymptotic freedom provides the perturbation theory basis for comparisons between QCD theory and laboratory high energy scattering experiments. It is here shown that the asymptotically free vacuum has negative dissipation implicit in the color electrical conductivity. Negative dissipation implies an asymptotically free QCD negative temperature {em excited state amplifier} unstable to decay. The qualitative experimental implications of this instability are explored.



قيم البحث

اقرأ أيضاً

We study the instability of the Higgs vacuum caused by a cloud of strings. By catalysis, the decay rate of the vacuum is highly enhanced and, when the energy density of the cloud is larger than the critical value, a semi-classical vacuum decay occurs . We also discuss the relation between the string cloud and observational constraints on the cosmic strings from the viewpoint of the catalysis, which are converted into bounds on the parameters of the Higgs potential.
In-In perturbation theory is a vital tool for cosmology and nonequilibrium physics. Here, we reconcile an apparent conflict between two of its important aspects with particular relevance to De Sitter/inflationary contexts: (i) the need to slightly de form unitary time evolution with an i*epsilon prescription that projects the free (Bunch-Davies) vacuum onto the interacting vacuum and renders vertex integrals well-defined, and (ii) Weinbergs nested commutator reformulation of in-in perturbation theory which makes manifest the constraints of causality within expectation values of local operators, assuming exact unitarity. We show that a modified i*epsilon prescription maintains the exact unitarity on which the derivation of (ii) rests, while nontrivially agreeing with (i) to all orders of perturbation theory.
We show that a cosmic string associated with spontaneous $U(1)_R$ symmetry breaking gives a constraint for supersymmetric model building. In some models, the string can be viewed as a tube-like domain wall with a winding number interpolating a false vacuum and a true vacuum. Such string causes inhomogeneous decay of the false vacuum to the true vacuum via rapid expansion of the radius of the tube and hence its formation would be inconsistent with the present Universe. However, we demonstrate that there exist metastable solutions which do not expand rapidly. Furthermore, when the true vacua are degenerate, the structure inside the tube becomes involved. As an example, we show a bamboo-like solution, which suggests a possibility observing an information of true vacua from outside of the tube through the shape and the tension of the tube.
We consider matter density effects in theories with a false ground state. Large and dense systems, such as stars, can destabilize a metastable minimum and allow for the formation of bubbles of the true minimum. We derive the conditions under which th ese bubbles form, as well as the conditions under which they either remain confined to the dense region or escape to infinity. The latter case leads to a phase transition in the universe at star formation. We explore the phenomenological consequences of such seeded phase transitions.
Strongly correlated quantum fluids are phases of matter that are intrinsically quantum mechanical, and that do not have a simple description in terms of weakly interacting quasi-particles. Two systems that have recently attracted a great deal of inte rest are the quark-gluon plasma, a plasma of strongly interacting quarks and gluons produced in relativistic heavy ion collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic gases confined in optical or magnetic traps. These systems differ by more than 20 orders of magnitude in temperature, but they were shown to exhibit very similar hydrodynamic flow. In particular, both fluids exhibit a robustly low shear viscosity to entropy density ratio which is characteristic of quantum fluids described by holographic duality, a mapping from strongly correlated quantum field theories to weakly curved higher dimensional classical gravity. This review explores the connection between these fields, and it also serves as an introduction to the Focus Issue of New Journal of Physics on Strongly Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The presentation is made accessible to the general physics reader and includes discussions of the latest research developments in all three areas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا