ترغب بنشر مسار تعليمي؟ اضغط هنا

Combining Semi-analytic Models with Simulations of Galaxy Clusters: the Need for Heating from Active Galactic Nuclei

100   0   0.0 ( 0 )
 نشر من قبل Chris Short
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semi-analytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that closely resembles that found in the real universe. We demonstrate that, to achieve the high entropy levels found in clusters, active galactic nuclei must inject a large fraction of their energy into the intergalactic/intracluster media throughout the growth period of the central black hole. These simulations reinforce the argument of Bower et al., who arrived at the same conclusion on the basis of purely semi-analytic reasoning.

قيم البحث

اقرأ أيضاً

We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semi-analytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that closely resembles that found in the real universe. We demonstrate that, to achieve the high entropy levels found in clusters, active galactic nuclei must inject a large fraction of their energy into the intergalactic/intracluster media throughout the growth period of the central black hole. These simulations reinforce the argument of Bower et al. (2008), who arrived at the same conclusion on the basis of purely semi-analytic reasoning.
We present results from a new set of 30 cosmological simulations of galaxy clusters, including the effects of radiative cooling, star formation, supernova feedback, black hole growth and AGN feedback. We first demonstrate that our AGN model is capabl e of reproducing the observed cluster pressure profile at redshift, z~0, once the AGN heating temperature of the targeted particles is made to scale with the final virial temperature of the halo. This allows the ejected gas to reach larger radii in higher-mass clusters than would be possible had a fixed heating temperature been used. Such a model also successfully reduces the star formation rate in brightest cluster galaxies and broadly reproduces a number of other observational properties at low redshift, including baryon, gas and star fractions; entropy profiles outside the core; and the X-ray luminosity-mass relation. Our results are consistent with the notion that the excess entropy is generated via selective removal of the densest material through radiative cooling; supernova and AGN feedback largely serve as regulation mechanisms, moving heated gas out of galaxies and away from cluster cores. However, our simulations fail to address a number of serious issues; for example, they are incapable of reproducing the shape and diversity of the observed entropy profiles within the core region. We also show that the stellar and black hole masses are sensitive to numerical resolution, particularly the gravitational softening length; a smaller value leads to more efficient black hole growth at early times and a smaller central galaxy.
78 - Fabio Fontanot 2020
We present a new implementation of the GAlaxy Evolution and Assembly (GAEA) semi-analytic model, that features an improved modelling of the process of cold gas accretion onto supermassive black hole (SMBHs), derived from both analytic arguments and h igh-resolution simulations. We consider different scenarios for the loss of angular momentum required for the available cold gas to be accreted onto the central SMBHs, and we compare different combinations of triggering mechanisms, including galaxy mergers and disc instabilities in star forming discs. We compare our predictions with the luminosity function (LF) observed for Active Galactic Nuclei (AGN) and we confirm that a non-instantaneous accretion timescale (either in the form of a low-angular momentum reservoir or as an assumed light curve evolution) is needed in order to reproduce the measured evolution of the AGN-LF and the so-called AGN-downsizing trend. Moreover, we also study the impact of AGN feedback, in the form of AGN-driven outflows, on the SF properties of model galaxies, using prescriptions derived both from empirical studies or from numerical experiments. We show that AGN-driven outflows are effective in suppressing the residual star formation rate in massive galaxies ($> 10^{11} M_odot$) without changing their overall assembly history. These winds also affect the SFR of lower mass galaxies, resulting in a too large fraction of passive galaxies at $< 10^{10} M_odot$. Finally, we study the Eddington ratio distribution as a function of SMBH mass, showing that only objects more massive than $10^8 M_odot$ are already in a self-regulated state as inferred from observations.
We model the triggering of Active Galactic Nuclei (AGN) in galaxy clusters using the semi- analytic galaxy formation model SAGE (?). We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluste r medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with that of AGN and galaxies with intense star formation from a sample of low-redshift, relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if $2.5times10^{-14} < P_{ram} < 2.5times10^{-13}$ Pa and $P_{ram} > 2P_{internal}$; this is consistent with expectations from hydrodynamical simulations of ram-pressure induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.
95 - B. R. McNamara 2007
High resolution X-ray spectroscopy of the hot gas in galaxy clusters has shown that the gas is not cooling to low temperatures at the predicted rates of hundreds to thousands of solar masses per year. X-ray images have revealed giant cavities and sho ck fronts in the hot gas that provide a direct and relatively reliable means of measuring the energy injected into hot atmospheres by active galactic nuclei (AGN). Average radio jet powers are near those required to offset radiative losses and to suppress cooling in isolated giant elliptical galaxies, and in larger systems up to the richest galaxy clusters. This coincidence suggests that heating and cooling are coupled by feedback, which suppresses star formation and the growth of luminous galaxies. How jet energy is converted to heat and the degree to which other heating mechanisms are contributing, eg. thermal conduction, are not well understood. Outburst energies require substantial late growth of supermassive black holes. Unless all of the approximately 10E62 erg required to suppress star formation is deposited in the cooling regions of clusters, AGN outbursts must alter large-scale properties of the intracluster medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا