ﻻ يوجد ملخص باللغة العربية
High resolution X-ray spectroscopy of the hot gas in galaxy clusters has shown that the gas is not cooling to low temperatures at the predicted rates of hundreds to thousands of solar masses per year. X-ray images have revealed giant cavities and shock fronts in the hot gas that provide a direct and relatively reliable means of measuring the energy injected into hot atmospheres by active galactic nuclei (AGN). Average radio jet powers are near those required to offset radiative losses and to suppress cooling in isolated giant elliptical galaxies, and in larger systems up to the richest galaxy clusters. This coincidence suggests that heating and cooling are coupled by feedback, which suppresses star formation and the growth of luminous galaxies. How jet energy is converted to heat and the degree to which other heating mechanisms are contributing, eg. thermal conduction, are not well understood. Outburst energies require substantial late growth of supermassive black holes. Unless all of the approximately 10E62 erg required to suppress star formation is deposited in the cooling regions of clusters, AGN outbursts must alter large-scale properties of the intracluster medium.
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accret
A complete flat-spectrum radio-loud sample of AGN includes a significant fraction of Seyfert-like AGN including a NLS1. Analysis of their optical spectra suggests that the reddest continuum colours are either associated with AGN in nearby resolved ga
In this paper, we review the prospects for studies of active galactic nuclei (AGN) using the envisioned future Cherenkov Telescope Array (CTA). This review focuses on jetted AGN, which constitute the vast majority of AGN detected at gamma-ray energie
We present hydrodynamical N-body simulations of clusters of galaxies with feedback taken from semi-analytic models of galaxy formation. The advantage of this technique is that the source of feedback in our simulations is a population of galaxies that
Gravitational-wave (GW) and gravitational slingshot recoil kicks, which are natural products of SMBH evolution in merging galaxies, can produce active galactic nuclei that are offset from the centers of their host galaxies. Detections of offset AGN w