ﻻ يوجد ملخص باللغة العربية
The formation mechanisms of evaporated Pd islands on the reconstructed Au(111) $22 /times /sqrt{3}$ herringbone surface have been here studied by Scanning Tunneling Microscopy (STM) at room temperature. Atomically resolved STM images at the very early stages of growth provide a direct observation of the mechanisms involved in preferential Pd islands nucleation at the elbows of the herringbone structure. At low Pd coverage the Au(111) herringbone structure remains substantially unperturbed and isolated Pd atoms settled in hollow sites between Au atoms are found nearby the elbows and the distortions of the reconstructed surface. In the same regions, at extremely low coverage (0.003 ML), substituted Pd atoms in lattice sites of the Au(111) surface are also observed, revealing the occurrence of a place exchange mechanism. Substitution seems to play a fundamental role in the nucleation process, forming aggregation centers for incoming atoms and thus leading to the ordered growth of Pd islands on Au(111). Atomically resolved STM images of Pd islands reveal a close-packed arrangement with lattice parameter close to the interatomic distance between gold atoms in the fcc regions of the Au(111) surface. Distortion of the herringbone structure for Pd coverages higher than 0.25 ML indicates strong interaction between the growing islands and the topmost Au(111) layer.
Pentacenequinone (PnQ) impurities have been introduced into a pentacene source material in a controlled manner to quantify the relative effects of the impurity content on grain boundary structure and thin film nucleation. Atomic force microscopy (AFM
We present a combined experimental and theoretical study of submonolayer heteroepitaxial growth of Ag on Si(111)-7x7 at temperatures from 420 K to 550 K when Ag atoms can easily diffuse on the surface and the reconstruction 7x7 remains stable. STM me
Magnetometry and neutron scattering have been used to study the magnetic properties of pressure graded Co/Pd multilayers. The grading of the multilayer structure was done by varying the deposition pressure during sputtering of the samples. Magnetic d
We determine the ground-state structure of a double vacancy in a hydrogen monolayer on the Pd(111) surface. We represent the double vacancy as a triple vacancy containing one additional hydrogen atom. The potential-energy surface for a hydrogen atom
Using in situ low-energy electron microscopy and density functional theory, we studied the growth structure and work function of bilayer graphene on Pd(111). Low-energy electron diffraction analysis established that the two graphene layers have multi