ترغب بنشر مسار تعليمي؟ اضغط هنا

New SETI Sky Surveys for Radio Pulses

342   0   0.0 ( 0 )
 نشر من قبل Andrew Siemion
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew Siemion




اسأل ChatGPT حول البحث

Berkeley conducts 7 SETI programs at IR, visible and radio wavelengths. Here we review two of the newest efforts, Astropulse and Flys Eye. A variety of possible sources of microsecond to millisecond radio pulses have been suggested in the last several decades, among them such exotic events as evaporating primordial black holes, hyper-flares from neutron stars, emissions from cosmic strings or perhaps extraterrestrial civilizations, but to-date few searches have been conducted capable of detecting them. We are carrying out two searches in hopes of finding and characterizing these mu-s to ms time scale dispersed radio pulses. These two observing programs are orthogonal in search space; the Allen Telescope Arrays (ATA) Flys Eye experiment observes a 100 square degree field by pointing each 6m ATA antenna in a different direction; by contrast, the Astropulse sky survey at Arecibo is extremely sensitive but has 1/3,000 of the instantaneous sky coverage. Astropulses multibeam data is transferred via the internet to the computers of millions of volunteers. These computers perform a coherent de-dispersion analysis faster than the fastest available supercomputers and allow us to resolve pulses as short as 400 ns. Overall, the Astropulse survey will be 30 times more sensitive than the best previous searches. Analysis of results from Astropulse is at a very early stage. The Flys Eye was successfully installed at the ATA in December of 2007, and to-date approximately 450 hours of observation has been performed. We have detected three pulsars and six giant pulses from the Crab pulsar in our diagnostic pointing data. We have not yet detected any other convincing bursts of astronomical origin in our survey data. (Abridged)



قيم البحث

اقرأ أيضاً

67 - Brian C. Lacki 2021
Interstellar travel in the Milky Way is commonly thought to be a long and dangerous enterprise, but are all galaxies so hazardous? I introduce the concept of galactic traversability to address this question. Stellar populations are one factor in trav ersability, with higher stellar densities and velocity dispersions aiding rapid spread across a galaxy. The interstellar medium (ISM) is another factor, as gas, dust grains, and cosmic rays (CRs) all pose hazards to starfarers. I review the current understanding of these components in different types of galaxies, and conclude that red quiescent galaxies without star formation have favorable traversability. Compact elliptical galaxies and globular clusters could be super-traversable, because stars are packed tightly together and there are minimal ISM hazards. Overall, if the ISM is the major hindrance to interstellar travel, galactic traversability increases with cosmic time as gas fractions and star formation decline. Traversability is a consideration in extragalactic surveys for the search for extraterrestrial intelligence (SETI).
44 - F. Loi , M. Murgia , F. Govoni 2019
Numerical simulations offer the unique possibility to forecast the results of surveys and targeted observations that will be performed with next generation instruments like the Square Kilometre Array. In this paper, we investigate for the first time how future radio surveys in polarization will be affected by confusion noise. To do this, we produce 1.4 GHz simulated full-Stokes images of the extra-galactic sky by modelling various discrete radio sources populations. The results of our modelling are compared to data in the literature to check the reliability of our procedure. We also estimate the number of polarized sources detectable by future surveys. Finally, from the simulated images we evaluate the confusion limits in I, Q, and U Stokes parameters, giving analytical formulas of their behaviour as a function of the angular resolution.
Note: This is a revised version of the paper that _corrects_a_calculation_error in translating observed Jansky units to EIRP in Watts. Mistakes are labeled below. Motivated by the hypothesis that Oumuamua could conceivably be an interstellar probe, w e used the Allen Telescope Array to search for radio transmissions that would indicate a non-natural origin for this object. Observations were made at radio frequencies between 1 and 10 GHz using the Arrays correlator receiver with a channel bandwidth of 100 kHz. In frequency regions not corrupted by man-made interference, we find no signal flux with frequency-dependent lower limits of 0.01 Jy at 1 GHz and 0.1 Jy at 7 GHz. For a putative isotropic object, these limits correspond to transmitter powers of (was mistakenly 30 mW) 10 W and (was mistakenly 300 mW) 100 W, respectively. In frequency ranges that are heavily utilized for satellite communications, our sensitivity to weak signals is badly impinged, but we can still place an upper limit of (was mistakenly 10 W) 3 kW for a transmitter on the asteroid. For comparison and validation should a transmitter be discovered, contemporaneous measurements were made on the solar system asteroids 2017 UZ and 2017 WC with comparable sensitivities. Because they are closer to Earth, we place upper limits on transmitter power to be 0.1 and 0.001 times the limits for Oumuamua, respectively.
We apply classical machine vision and machine deep learning methods to prototype signal classifiers for the search for extraterrestrial intelligence. Our novel approach uses two-dimensional spectrograms of measured and simulated radio signals bearing the imprint of a technological origin. The studies are performed using archived narrow-band signal data captured from real-time SETI observations with the Allen Telescope Array and a set of digitally simulated signals designed to mimic real observed signals. By treating the 2D spectrogram as an image, we show that high quality parametric and non-parametric classifiers based on automated visual analysis can achieve high levels of discrimination and accuracy, as well as low false-positive rates. The (real) archived data were subjected to numerous feature-extraction algorithms based on the vertical and horizontal image moments and Huff transforms to simulate feature rotation. The most successful algorithm used a two-step process where the image was first filtered with a rotation, scale and shift-invariant affine transform followed by a simple correlation with a previously defined set of labeled prototype examples. The real data often contained multiple signals and signal ghosts, so we performed our non-parametric evaluation using a simpler and more controlled dataset produced by simulation of complex-valued voltage data with properties similar to the observed prototypes. The most successful non-parametric classifier employed a wide residual (convolutional) neural network based on pre-existing classifiers in current use for object detection in ordinary photographs. These results are relevant to a wide variety of research domains that already employ spectrogram analysis from time-domain astronomy to observations of earthquakes to animal vocalization analysis.
127 - M. Hazumi , P.A.R. Ade , A. Adler 2021
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXAs H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 micro K-arcmin with a typical angular resolution of 0.5 deg. at 100GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا