ترغب بنشر مسار تعليمي؟ اضغط هنا

A model for the Z-track phenomenon, jet formation and the kilohertz QPO based on Rossi-XTE observations of the Z-track sources

286   0   0.0 ( 0 )
 نشر من قبل Monika Balucinska-Church
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new model for the Z-track phenomenon, based on analysis of the spectral evolution around the Z-track in several Z-track sources, in which radiation pressure plays a major role. Increasing mass accretion rate on the normal branch causes heating of the neutron star with the emissive flux from the surface increasing by an order of magnitude to become super-Eddington at the horizontal branch where radio detection shows the presence of jets. We propose that the radiation pressure disrupts the inner disk leading to the launching of the jets. Secondly, by timing analysis of the same data we find a correlation of the frequency of kHz QPO with the emissive flux and propose that the higher frequency QPO is an oscillation at the inner disk edge which progressively moves to larger radial positions as the disk is disrupted by radiation pressure.



قيم البحث

اقرأ أيضاً

The brightest class of low mass X-ray binary source: the Z-track sources are reviewed specifically with regard to the nature of the three distinct states of the sources. A physical model is presented for the Cygnus X-2 sub-group in which increasing m ass accretion rate takes place on the Normal Branch resulting in high neutron star temperature and radiation pressure responsible for inner disk disruption and launching of jets. The Flaring Branch consists of unstable nuclear burning on the neutron star. It is shown that the Sco X-1 like sub-group is dominated by almost non-stop flaring consisting of both unstable burning and increase of Mdot, causing higher neutron star temperatures. Finally, results of Atoll source surveys are presented and a model for the nature of the Banana and Island states in these sources is proposed. Motion along the Banana state is caused by variation of Mdot. Measurements of the high energy cut-off of the Comptonized emission E_CO provide the electron temperature T_e of the Comptonizing ADC; above a luminosity of 2x10^37 erg/s E_CO is a few keV and T_e equals the neutron star temperature. At lower luminosities, the cut-off energy rises towards 100 keV showing heating of the corona by an unknown process. This spectral hardening is the cause of the Island state of Atoll sources. The models for Z-track and Atoll sources thus constitute a unified model for low mass X-ray binary sources.
Based on the results of applying the extended ADC emission model for low mass X-ray binaries to three Z-track sources: GX340+0, GX5-1 and CygX-2, we propose an explanation of the CygnusX-2 like Z-track sources. The Normal Branch is dominated by the i ncreasing radiation pressure of the neutron star caused by a mass accretion rate that increases between the soft apex and the hard apex. The radiation pressure continues to increase on the Horizontal Branch becoming several times super-Eddington. We suggest that this disrupts the inner accretion disk and that part of the accretion flow is diverted vertically forming jets which are detected by their radio emission on this part of the Z-track. We thus propose that high radiation pressure is the necessary condition for the launching of jets. On the Flaring Branch there is a large increase in the neutron star blackbody luminosity at constant mass accretion rate indicating an additional energy source on the neutron star. We find that there is good agreement between the mass accretion rate per unit emitting area of the neutron star mdot at the onset of flaring and the theoretical critical value at which burning becomes unstable. We thus propose that flaring in the CygnusX-2 like sources consists of unstable nuclear burning. Correlation of measurements of kilohertz QPO frequencies in all three sources with spectral fitting results leads to the proposal that the upper kHz QPO is an oscillation always taking place at the inner accretion disk edge, the radius of which increases due to disruption of the disk by the high radiation pressure of the neutron star.
We review the longterm confusion which has existed over the nature of flaring in the brightest class of low mass X-ray binary: the Z-track sources, specifically in the Cygnus X-2 sub-group. Intensity reductions in the lightcurve produce a branch in c olour -colour diagrams similar to that of real flares in the Sco X-1 like group, and the nature of this branch was not clear. However, based on observations of Cygnus X-2 in which this dipping/flaring occurred it was proposed that the mass accretion rate in Z-track sources in general increases monotonically along the Z-track towards the Flaring Branch, a standard assumption widely held. It was also suggested that the Cygnus X-2 group have high inclination. Based on recent multi-wavelength observations of Cygnus X-2 we resolve these issues, showing by spectral analysis that the Dipping Branch consists of absorption events in the outer disk, unrelated to the occasional real flaring in the source. Thus motivation for Mdot increasing along the Z from Horizontal - Normal to Flaring Branch is removed, as is the idea that high inclination distinguishes the Cygnus X-2 group. Finally, the observations provide further evidence for the extended nature of the Accretion Disk Corona (ADC), and the correct modelling of the ADC Comptonized emission is crucial to the interpretation of low mass X-ray binary data.
We carried out an extensive RXTE campaign, in 1997 June, to study Circinus X-1 during the active portion of its 16.55-d intensity cycle. The observations spanned 10 days, including 56% coverage for 7 d, and allowed us to find time segments which clea rly demonstrate continuous evolution along the horizontal, normal, and flaring branches (HB/NB/FB) of a Z-source low-mass X-ray binary. These results confirm and extend the behavior we inferred from earlier observations. Here we study the continuous evolution of the Fourier power spectra and the energy spectra around the complete hardness-intensity track. A narrow quasi-periodic oscillation (QPO) peak, previously observed in the power spectra at 1.3-32 Hz, increases in frequency from 12 Hz to 25 Hz moving down a vertical extension of the HB in the hardness-intensity diagram. These horizontal branch QPOs (HBOs) occur near 30 Hz and fade in strength on the horizontal portion of the HB, while a broad peak in the power spectrum arises near 4 Hz. This peak becomes much more prominent along the NB and remains near 4 Hz (the normal branch QPOs, or NBOs). On the FB, neither QPO is present and the power spectrum is dominated by very low frequency noise. We also found that each branch of the spectral track is associated with a specific type of evolution of the energy spectrum. We explored various models for the energy spectrum and parameterized the evolution of the spectrum in terms of a two-component model consisting of a multi-temperature disk blackbody and a higher-temperature (~2 keV) blackbody. We also show that an unusual line- or edge-like feature occurs at ~10 keV in energy spectra from the FB and lower NB. This unusual feature is very similar to one seen on the FB and lower NB of the Z source GX 5-1.
A Kalman filter package has been developed for reconstructing muon ($mu^pm$) tracks (coming from the neutrino interactions) in ICAL detector. Here, we describe the algorithm of muon track fitting, with emphasis on the error propagation of the element s of Kalman state vector along the muon trajectory through dense materials and inhomogeneous magnetic field. The higher order correction terms are included for reconstructing muon tracks at large zenith angle $theta$ (measured from the perpendicular to the detector planes). The performances of this algorithm and its limitations are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا