ترغب بنشر مسار تعليمي؟ اضغط هنا

The Complete Z Track of Circinus X-1

74   0   0.0 ( 0 )
 نشر من قبل Bob Shirey
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out an extensive RXTE campaign, in 1997 June, to study Circinus X-1 during the active portion of its 16.55-d intensity cycle. The observations spanned 10 days, including 56% coverage for 7 d, and allowed us to find time segments which clearly demonstrate continuous evolution along the horizontal, normal, and flaring branches (HB/NB/FB) of a Z-source low-mass X-ray binary. These results confirm and extend the behavior we inferred from earlier observations. Here we study the continuous evolution of the Fourier power spectra and the energy spectra around the complete hardness-intensity track. A narrow quasi-periodic oscillation (QPO) peak, previously observed in the power spectra at 1.3-32 Hz, increases in frequency from 12 Hz to 25 Hz moving down a vertical extension of the HB in the hardness-intensity diagram. These horizontal branch QPOs (HBOs) occur near 30 Hz and fade in strength on the horizontal portion of the HB, while a broad peak in the power spectrum arises near 4 Hz. This peak becomes much more prominent along the NB and remains near 4 Hz (the normal branch QPOs, or NBOs). On the FB, neither QPO is present and the power spectrum is dominated by very low frequency noise. We also found that each branch of the spectral track is associated with a specific type of evolution of the energy spectrum. We explored various models for the energy spectrum and parameterized the evolution of the spectrum in terms of a two-component model consisting of a multi-temperature disk blackbody and a higher-temperature (~2 keV) blackbody. We also show that an unusual line- or edge-like feature occurs at ~10 keV in energy spectra from the FB and lower NB. This unusual feature is very similar to one seen on the FB and lower NB of the Z source GX 5-1.



قيم البحث

اقرأ أيضاً

103 - M. Coriat , R. Fender , C. Tasse 2019
We present the results of millimetre (33 and 35 GHz) and centimetre (2.1, 5.5 and 9.0 GHz) wavelength observations of the neutron star X-ray binary Circinus X-1, using the Australia Telescope Compact Array. We have used advanced calibration and decon volution algorithms to overcome multiple issues due to intrinsic variability of the source and direction dependent effects. The resulting centimetre and millimetre radio maps show spatially resolved jet structures from sub-arcsecond to arcminute angular scales. They represent the most detailed investigation to date of the interaction of the relativistic jet from the X-ray binary with the young supernova remnant in which it is embedded. Comparison of projected jet axes at different wavelengths indicate significant rotation of the jet axis with increasing angular scale. This either suggests interactions of the jet material with surrounding media, creating bends in the jet flow path, or jet precession. We explore the latter hypothesis by successfully modelling the observed jet path using a kinematic jet model. If precession is the right interpretation and our modelling correct, the best fit parameters describe an accreting source with mildly relativistic ejecta ($v = 0.5 c$), inclined close to the plane of the sky ($i = 86^{circ}$) and precessing over a 5-year period.
139 - D.E.Calvelo 2011
We present results from the first radio observations of a complete orbit (~ 17 days) of the neutron star X-ray binary Circinus X-1 using the Australia Telescope Compact Array Broadband Backend, taken while the system was in an historically faint stat e. We have captured the rapid rise and decline of a periastron passage flare, with flux densities for 9 days prior to the event stable at ~ 1 mJy at 5.5 GHz and ~ 0.5 mJy at 9 GHz. The highest flux densities of 43.0 +/- 0.5 mJy at 5.5 GHz and 29.9 +/- 0.6 mJy at 9 GHz were measured during the flares decline (MJD 55206.69) which continues towards pre-flare flux densities over the following 6 days. Imaging of pre-flare data reveals steady structure including two stable components within 15 arc-seconds of the core which we believe may be persistent emission regions within the systems outflows, one of which is likely associated with the systems counter-jet. Unlike past observations carried out in the systems brighter epochs, we observe no significant structural variations within approx 3 arc-seconds of the cores position. Model subtraction and difference mapping provide evidence for variations slightly further from the core: up to 5 away. If related to the observed core flare, then these variations suggest very high outflow velocities with {Gamma} > 35, though this can be reduced significantly if we invoke phase delays of at least one orbital period. Interestingly, the strongest structural variations appear to the north west of the core, opposite to the strongest arcsec-scale emission historically. We discuss the implications of this behaviour, including the possibility of precession or a kinked approaching jet.
We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms t o search for the ~16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. we obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.
We observed Circinus X-1 twice during a newly reached low-flux phase near zero orbital phase using the High-Energy Transmission Grating Spectrometer (HETGS) onboard Chandra. In both observations the source did not show the P Cygni lines we observed d uring the high-flux phases of the source in 2000 and 2001. During pre-zero phase the source did not exhibit significant variability and exhibited an emission-line spectrum rich in H- and He-like lines from high Z elements such as Si, S, Ar, and Ca. We analyzed all high resolution X-ray spectra by fitting photoionization and absorption models from the most recent version of the XSTAR code. The pre-zero phase spectrum could be fully modeled with a very hot photoionized plasma with an ionization parameter of log xi = 3.0. Post-zero phase episodes feature absorbers with variable high columns, ionization parameter, and luminosity. While cold absorption remains at levels quite similar to the one observed in previous years, the new observations show unprecedented levels of variable warm absorption. The line emissivities also indicate that the observed low source luminosity is inconsistent with a static hot accretion disk corona (ADC), an effect that seems common to other near edge-on ADC sources as well. We conclude that unless there exists some means of coronal heating other than X-rays, the true source luminosity is likely much higher and we observe obscuration in analogy to the extragalactic Seyfert II sources. We discuss possible consequences and relate cold, luke-warm, warm, and hot absorbers to dynamic accretion scenarios.
In this paper, we report the first results of the extragalactic Z-source LMC X-2 obtained using the $sim$ 140 ks observations with {it Large Area X-ray Proportional Counter (LAXPC)} and {it Soft X-ray Telescope (SXT)} onboard {it AstroSat}. The HID c reated with the {it LAXPC} data revealed a complete Z-pattern of the source, showing all the three branches. We studied the evolution of the broadband X-ray spectra in the energy range of $0.5-20.0$ keV along the Z-track, a first such study of this source. The X-ray spectra of the different parts of the Z-pattern were well described by an absorbed Comptonized component. An absence of the accretion disc component suggests that the disc is most probably obscured by a Comptonized region. The best fit electron temperature ($kT_e$) was found to be in the range of $1.7-2.1$ keV and optical depth ($tau$) was found to be in the range of $13.2-17.5$. The optical depth ($tau$) increased as the source moved from the normal/flaring branch (NB/FB) vertex to the upper part of the FB, suggesting a possible outflow triggered by a strong radiation pressure. The power density spectra (PDS) of HB and NB could be fitted with a pure power-law of index $alpha$ $sim$ 1.68 and 0.83 respectively. We also found a weak evidence of QPO (2.8~$sigma$) in the FB. The intrinsic luminosity of the source varied between $(1.03-1.79)$ $times$ 10$^{38}$ ergs/s. We discuss our results by comparing with other Z-sources and the previous observations of LMC X-2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا