ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation and modelling of dusty, low gravity L, and M dwarfs

141   0   0.0 ( 0 )
 نشر من قبل Andreas Seifahrt
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observational facilities allow now the detection of optical and IR spectra of young M- and L-dwarfs. This enables empirical comparisons with old M- and L- dwarfs, and detailed studies in comparison with synthetic spectra. While classical stellar atmosphere physics seems perfectly appropriate for old M-dwarfs, more physical and chemical processes, cloud formation in particular, needs to be modelled in the substellar regime to allow a detailed spectral interpretation. Not much is known so far about the details of the inset of cloud formation at the spectral transition region between M and L dwarfs. Furthermore there is observational evidence for diversity in the dust properties of objects having the same spectral type. Do we understand these differences? The question is also how young M- and L-dwarfs need to be classified, which stellar parameter do they have and whether degenerations in the stellar parameter space due to the changing atmosphere physics are present, like in the L-T transition region. The Splinter was driven by these questions which we will use to encourage interactions between observation and theory. Given the recent advances, both in observations and spectral modelling, an intensive discussion between observers and theoreticians will create new synergies in our field.



قيم البحث

اقرأ أيضاً

We present textit{Spitzer Space Telescope} variability monitoring observations of three low-gravity L dwarfs with previous detections of variability in the near-IR, 2MASS J0045+16, 2MASS J0501-00 and 2MASS J1425-36. We detect significant, periodic va riability in two of our targets, 2MASS J0045+16 and 2MASS J0501-00. We do not detect variability in 2MASS J1425-36. Combining our new rotation periods with rotational velocities, we calculate inclination angles of $22pm1^{circ}$, ${60^{+13 }_{-8}} ^{circ}$ and $52^{+19}_{-13}~^{circ}$ for 2MASS J0045+16, 2MASS J0501-00 and 2MASS J1425-36 respectively. Our three new objects are consistent with the tentative relations between inclination, amplitude and color anomaly previously reported. Objects with the highest variability amplitudes are inclined equator-on, while the maximum observed amplitude decreases as the inclination angle decreases. We also find a correlation between the inclination angle and $(J-K)_{mathrm{2MASS}}$ color anomaly for the sample of objects with measured inclinations. Compiling the entire sample of brown dwarfs with textit{Spitzer} variability detections, we find no enhancement in amplitude for young, early-L dwarfs compared to the field dwarf population. We find a possible enhancement in amplitude of low-gravity late-L dwarfs at $4.5~mu$m. We do not find a correlation between amplitude ratio and spectral type for field dwarfs or for the young population. Finally, we compile the rotation periods of a large sample of brown dwarfs with ages 1 Myr to 1 Gyr and compare the rotation rates predicted by evolutionary models assuming angular momentum conservation. We find that the rotation rates of the current sample of brown dwarfs fall within the expected range set by evolutionary models and breakup limits.
We have compiled L and M photometry of 63 single and binary M, L,and T dwarfs obtained at UKIRT using the MKO filter set. This compilation includes new L data for 8 L dwarfs and 13 T dwarfs and new M data for 7 L dwarfs, 5 T dwarfs, and Gl 229A. We c ompute L_bol, BC_K, and T_eff for 42 dwarfs whose flux-calibrated JHK spectra, L photometry, and trigonometric parallaxes are available, and we estimate these quantities for 9 other dwarfs whose parallaxes and flux-calibrated spectra have been obtained. BC_K is a well-behaved function of near-IR spectral type with a dispersion of ~0.1 mag for types M6-T5; it is significantly more scattered for types T5-T9. T_eff declines steeply and monotonically for types M6-L7 and T4-T9, but is nearly constant at ~1450 K for types L7-T4 with assumed ages of ~3 Gyr. This constant T_eff is evidenced by nearly unchanging values of L-M between types L6 and T3. We compare the observed K, L, and M luminosities of L and T dwarfs in our sample with those predicted by model atmospheres with varying surface gravities and sedimentation efficiencies. The models indicate that the L3-T4.5 dwarfs generally have higher gravities (log g = 5.0-5.5) than the T6-T9 dwarfs (log g = 4.5-5.0). The predicted M luminosities of T dwarfs are 1.5-2.5 times larger than those derived empirically for the T dwarfs in our sample. This discrepancy is attributed to absorption at 4.5-4.9 um by CO, which is not expected under the condition of chemical equilibrium assumed in the models. We determine that the L3 dwarf Kelu-1 and the T0 dwarf SDSS J0423-0414 are probable binary systems. We compute log(L_bol/L_sun) = -5.73 +/- 0.05 and T_eff = 600-750 K for the T9 dwarf 2MASS J0415-0935, which supplants Gl 570D as the least luminous and coolest brown dwarf presently known.
66 - John E. Gizis 2000
I discuss observations of two traditional age indicators, chromospheric activity and kinematics, in late-M and L dwarfs near the hydrogen-burning limit. The frequency and strength of chromospheric activity disappears rapidly as a function of temperat ure over spectral types M8-L4. There is evidence that young late-M and L dwarfs have weaker activity than older ones, the opposite of the traditional stellar age-activity relation. The kinematics of L dwarfs confirm that lithium L dwarfs are younger than non-lithium dwarfs.
We present a 0.6-4.1 micron spectroscopic sequence of M, L, and T dwarfs. The spectra have R~2000 from 0.9 to 2.4 microns and R=2500-200 from 2.9 to 4.1 microns. These new data nearly double the number of L and T dwarfs that have reported L-band spec tra. The near-infrared spectra are combined with previously published red-optical spectra to extend the wavelength coverage to ~0.6 microns. Prominent atomic and molecular absorption features are identified including neutral lines of Al, Fe, Mg, Ca, Ti, Na, and K and 19 new weak CH_4 absorption features in the H-band spectra of mid- to late-type T dwarfs. In addition, we detect for the first time the 0-0 band of the A ^4Pi - X ^4Sigma^- transition of VO at ~1.06 microns in the spectra of L dwarfs and the P and R branches of the u_3 band of CH_4 in the spectrum of a T dwarf. The equivalent widths of the refractory atomic features all decrease with increasing spectral type and are absent by a spectral type of ~L0, except for the 1.189 micron Fe I line which persists to at least ~L3. We compute the bolometric luminosities of the dwarfs in our sample with measured parallaxes and find good agreement with previously published results that use L-band photometry to account for the flux emitted from 2.5 to 3.6 microns. Finally, 2MASS J2224381-0158521 (L4.5) has an anomalously red spectrum and the strongest Delta u=+2 CO bands in our sample. This may be indicative of unusually thick condensate clouds and/or low surface gravity.
We report new nearby L and late-M dwarfs (d_phot <= 30 pc) discovered in our search for nearby ultracool dwarfs (I-J >= 3.0, later than M8.0) at low Galactic latitude (|b| < 15 degr) over 4,800 square degrees in the DENIS database. We used late-M (>= M8.0), L, and T dwarfs with accurate trigonometric parallaxes to calibrate the M_J versus I-J colour-luminosity relation. The resulting photometric distances have standard errors of ~15%, which we used to select candidates d_phot <= 30 pc. We measured proper motions from multi-epoch images found in the public archives ALADIN, DSS, 2MASS, DENIS, with at least three distinct epochs and time baselines of 10 to 21 years. We then used a Maximum Reduced Proper Motion cutoff to select 28 candidates as ultracool dwarfs (M8.0--L8.0) and to reject one as a distant red star. No T dwarf candidates were found in this search which required an object to be detected in all three DENIS bands. Our low-resolution optical spectra confirmed that 26 of them were indeed ultracool dwarfs, with spectral types from M8.0 to L5.5. Two contaminants and one rejected by the Maximum Reduced Proper Motion cutoff were all reddened F-K main sequence stars. 20 of these 26 ultracool dwarfs are new nearby ultracool dwarf members, three L dwarfs within 15 pc with one L3.5 at only ~10 pc. We determine a stellar density of bar{Phi}_J cor=(1.64 +- 0.46).10^{-3} dwarfs pc^{-3} mag^{-1} over 11.1 <= M_J <= 13.1 based on that sample of M8--L3.5 ultracool dwarfs. Our ultracool dwarf density value is in good agreement with the Cruz et al. measurement of the ultracool dwarf density at high Galactic latitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا