ترغب بنشر مسار تعليمي؟ اضغط هنا

L and M Photometry of Ultracool Dwarfs

56   0   0.0 ( 0 )
 نشر من قبل David A. Golimowski
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have compiled L and M photometry of 63 single and binary M, L,and T dwarfs obtained at UKIRT using the MKO filter set. This compilation includes new L data for 8 L dwarfs and 13 T dwarfs and new M data for 7 L dwarfs, 5 T dwarfs, and Gl 229A. We compute L_bol, BC_K, and T_eff for 42 dwarfs whose flux-calibrated JHK spectra, L photometry, and trigonometric parallaxes are available, and we estimate these quantities for 9 other dwarfs whose parallaxes and flux-calibrated spectra have been obtained. BC_K is a well-behaved function of near-IR spectral type with a dispersion of ~0.1 mag for types M6-T5; it is significantly more scattered for types T5-T9. T_eff declines steeply and monotonically for types M6-L7 and T4-T9, but is nearly constant at ~1450 K for types L7-T4 with assumed ages of ~3 Gyr. This constant T_eff is evidenced by nearly unchanging values of L-M between types L6 and T3. We compare the observed K, L, and M luminosities of L and T dwarfs in our sample with those predicted by model atmospheres with varying surface gravities and sedimentation efficiencies. The models indicate that the L3-T4.5 dwarfs generally have higher gravities (log g = 5.0-5.5) than the T6-T9 dwarfs (log g = 4.5-5.0). The predicted M luminosities of T dwarfs are 1.5-2.5 times larger than those derived empirically for the T dwarfs in our sample. This discrepancy is attributed to absorption at 4.5-4.9 um by CO, which is not expected under the condition of chemical equilibrium assumed in the models. We determine that the L3 dwarf Kelu-1 and the T0 dwarf SDSS J0423-0414 are probable binary systems. We compute log(L_bol/L_sun) = -5.73 +/- 0.05 and T_eff = 600-750 K for the T9 dwarf 2MASS J0415-0935, which supplants Gl 570D as the least luminous and coolest brown dwarf presently known.

قيم البحث

اقرأ أيضاً

66 - John E. Gizis 2000
I discuss observations of two traditional age indicators, chromospheric activity and kinematics, in late-M and L dwarfs near the hydrogen-burning limit. The frequency and strength of chromospheric activity disappears rapidly as a function of temperat ure over spectral types M8-L4. There is evidence that young late-M and L dwarfs have weaker activity than older ones, the opposite of the traditional stellar age-activity relation. The kinematics of L dwarfs confirm that lithium L dwarfs are younger than non-lithium dwarfs.
We present a catalog of 9888 M, L and T dwarfs detected in the Pan-STARRS1 3$pi$ Survey (PS1), covering three-quarters of the sky. Our catalog contains nearly all known objects of spectral types L0-T2 in the PS1 field, with objects as early as M0 and as late as T9, and includes PS1, 2MASS, AllWISE, and Gaia DR1 photometry. We analyze the different types of photometry reported by PS1, and use two types in our catalog to maximize both depth and accuracy. Using parallaxes from the literature, we construct empirical SEDs for field ultracool dwarfs spanning 0.5-12 $mu$m. We determine typical colors of M0-T9 dwarfs, and we highlight the distinctive colors of subdwarfs and young objects. Our catalog includes 492 L dwarfs detected in $r_{rm P1}$, the largest sample of L dwarfs detected at such blue wavelengths. We combine astrometry from PS1, 2MASS, and Gaia DR1 to calculate new proper motions for our catalog. We achieve a median precision of 2.9 mas yr$^{-1}$, a factor of $approx$3-10 improvement over previous large catalogs. Our catalog contains proper motions for 2405 M6-T9 dwarfs and includes the largest set of homogeneous proper motions for L and T dwarfs published to date, 406 objects for which there were no previous measurements, and 1176 objects for which we improve upon previous literature values. We analyze the kinematics of ultracool dwarfs in our catalog and find evidence that bluer but otherwise generic late-M and L field dwarfs (i.e., not subdwarfs) tend to have higher tangential velocities compared to typical field objects. With the public release of the PS1 data, this survey will continue to be an essential tool for characterizing the ultracool dwarf population.
[Abridged] As part of our on-going investigation into the magnetic field properties of ultracool dwarfs, we present simultaneous radio, X-ray, and H-alpha observations of three M9.5-L2.5 dwarfs (BRI0021-0214, LSR060230.4+391059, and 2MASSJ052338.2-14 0302). We do not detect X-ray or radio emission from any of the three sources, despite previous detections of radio emission from BRI0021 and 2M0523-14. Steady and variable H-alpha emission are detected from 2M0523-14 and BRI0021, respectively, while no H-alpha emission is detected from LSR0602+39. Overall, our survey of nine M8-L5 dwarfs doubles the number of ultracool dwarfs observed in X-rays, and triples the number of L dwarfs, providing in addition the deepest limits to date, log(L_X/L_bol)<-5. With this larger sample we find the first clear evidence for a substantial reduction in X-ray activity, by about two orders of magnitude, from mid-M to mid-L dwarfs. We find that the decline in both X-rays and H-alpha roughly follows L_{X,Halpha}/L_bol ~ 10^[-0.4x(SP-M6)] for SP>M6. In the radio band, however, the luminosity remains relatively unchanged from M0 to L4, leading to a substantial increase in L_rad/L_bol. Our survey also provides the first comprehensive set of simultaneous radio/X-ray/H-alpha observations of ultracool dwarfs, and reveals a clear breakdown of the radio/X-ray correlation beyond spectral type M7, evolving smoothly from L_{ u,rad}/L_X ~ 10^-15.5 to ~10^-11.5 Hz^-1 over the narrow spectral type range M7-M9. This breakdown reflects the substantial reduction in X-ray activity beyond M7, but its physical origin remains unclear since, as evidenced by the uniform radio emission, there is no drop in the field dissipation and particle acceleration efficiency.
We present a 0.6-4.1 micron spectroscopic sequence of M, L, and T dwarfs. The spectra have R~2000 from 0.9 to 2.4 microns and R=2500-200 from 2.9 to 4.1 microns. These new data nearly double the number of L and T dwarfs that have reported L-band spec tra. The near-infrared spectra are combined with previously published red-optical spectra to extend the wavelength coverage to ~0.6 microns. Prominent atomic and molecular absorption features are identified including neutral lines of Al, Fe, Mg, Ca, Ti, Na, and K and 19 new weak CH_4 absorption features in the H-band spectra of mid- to late-type T dwarfs. In addition, we detect for the first time the 0-0 band of the A ^4Pi - X ^4Sigma^- transition of VO at ~1.06 microns in the spectra of L dwarfs and the P and R branches of the u_3 band of CH_4 in the spectrum of a T dwarf. The equivalent widths of the refractory atomic features all decrease with increasing spectral type and are absent by a spectral type of ~L0, except for the 1.189 micron Fe I line which persists to at least ~L3. We compute the bolometric luminosities of the dwarfs in our sample with measured parallaxes and find good agreement with previously published results that use L-band photometry to account for the flux emitted from 2.5 to 3.6 microns. Finally, 2MASS J2224381-0158521 (L4.5) has an anomalously red spectrum and the strongest Delta u=+2 CO bands in our sample. This may be indicative of unusually thick condensate clouds and/or low surface gravity.
We observed strong superflares (defined as flares with energy in excess of 10^33 erg) on three late-M dwarfs: 2MASS J08315742+2042213 (hereafter 2M0831+2042; M7 V), 2MASS J08371832+2050349 (hereafter 2M0837+2050; M8 V) and 2MASS J08312608+2244586 (he reafter 2M0831+2244; M9 V). 2M0831+2042 and 2M0837+2050 are members of the young (~700 Myr) open cluster Praesepe. The strong superflare on 2M0831+2042 has an equivalent duration (ED) of 13.7 hr and an estimated energy of 1.3 X 10^35 erg. We observed five superflares on 2M0837+2050, on which the strongest superflare has an ED of 46.4 hr and an estimated energy of 3.5 X 10^35 erg. This energy is larger by 2.7 orders of magnitude than the largest flare observed on the older (7.6 Gyr) planet-hosting M8 dwarf TRAPPIST-1. Furthermore, we also observed five superflares on 2M0831+2244 which is probably a field star. The estimated energy of the strongest superflare on 2M0831+2244 is 6.1 X 10^34 erg. 2M0831+2042, 2M0837+2050 and 2MASS J0831+2244 have rotation periods of 0.556pm0.002, 0.193pm0.000 and 0.292pm0.001 d respectively, which are measured by using K2 light curves. We compare the flares of younger targets with those of TRAPPIST-1 and discuss the possible impacts of such flares on planets in the habitable zone of late-M dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا