ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative group velocity in layer-by-layer chiral photonic crystals

75   0   0.0 ( 0 )
 نشر من قبل Kin Hung Fung
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the group velocity of light in layer-by-layer chiral photonic crystals composed of dielectrics and metals. Through studying the band structures with an extended-zone scheme that is given by a Fourier analysis, we show the existence of negative group velocity in the proposed chiral structures. The physical mechanism is interpreted with the help of a simplified model that has an analytical solution. The iso-frequency contours of the photonic band structure suggest that the negative group velocity can lead to either positive or negative refraction, depending on the orientation of the medium interface. We propose a feasible realization of such kind of photonic crystals. Computational results on the proposed realization are consistent with that of the simplified models.

قيم البحث

اقرأ أيضاً

122 - Xiao-Chen Sun , Xiao Hu 2019
We clarify theoretically that the topological ring-cavity (TRC) modes propagating along the interface between two honeycomb-type photonic crystals distinct in topology can be exploited for achieving stable single-mode lasing, with the maximal intensi ty larger than a whispering-gallery-mode counterpart by order of magnitude. Especially, we show that the TRC modes located at the bulk bandgap center benefit maximally from the gain profile since they are most concentrated and uniform along the ring cavity, and that, inheriting from the Dirac-like dispersion of topological interface states, they are separated in frequency from each other and from other photonic modes, both favoring intrinsically single-mode lasing. A TRC mode running in a specific direction with desired orbital angular momentum can be stimulated selectively by injecting circularly polarized light. The TRC laser proposed in the present work can be fabricated by means of advanced semiconductor nanotechnologies, which generates chiral laser beams ideal for novel photonic functions.
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theorie s for realistic materials require the identification of quantized invariants describing the bulk quadrupole order. Here we identify the analog of quadrupole order in Maxwells equations for a photonic crystal (PhC) and identify quadrupole topological photonic crystals formed through a band inversion process. Unlike prior studies relying on threaded flux, our quadrupole moment is quantized purely by crystalline symmetries, which we confirm using three independent methods: analysis of symmetry eigenvalues, numerical calculations of the nested Wannier bands, and the expectation value of the quadrupole operator. Furthermore, through the bulk-edge correspondence of Wannier bands, we reveal the boundary manifestations of nontrivial quadrupole phases as quantized polarizations at edges and bound states at corners. Finally, we relate the nontrivial corner states to the emergent phenomena of quantized fractional corner charges and a filling anomaly as first predicted in electronic systems. Our work paves the way to further explore higher-order topological phases in nanophotonic systems and our method of inducing quadrupole phase transitions is also applicable to other wave systems, such as electrons, phonons and polaritons.
We report on enhanced fluorescence of lead sulfide quantum dots interacting with leaky modes of slab-type silicon photonic crystals. The photonic crystal slabs were fabricated supporting leaky modes in the near infrared wavelength range. Lead sulfite quantum dots which are resonant the same spectral range were prepared in a thin layer above the slab. We selectively excited the leaky modes by tuning wavelength and angle of incidence of the laser source and measured distinct resonances of enhanced fluorescence. By an appropriate experiment design, we ruled out directional light extraction effects and determined the impact of enhanced excitation. Three-dimensional numerical simulations consistently explain the experimental findings by strong near-field enhancements in the vicinity of the photonic crystal surface. Our study provides a basis for systematic tailoring of photonic crystals used in biological applications such as biosensing and single molecule detection, as well as quantum dot solar cells and spectral conversion applications.
Specific features of the defect modes of cholesteric liquid crystals (CLCs) with an isotropic defect, as well as their photonic density of states, Q factor, and emission, have been investigated. The effect of the thicknesses of the defect layer and t he system as a whole, the position of the defect layer, and the dielectric boundaries on the features of the defect modes have been analyzed.
186 - Nadine Leisgang 2018
We report the observation of optical second harmonic generation (SHG) in single-layer indium selenide (InSe). We measure a second harmonic signal of $>10^3$ $textrm{cts/s}$ under nonresonant excitation using a home-built confocal microscope and a sta ndard pulsed pico-second laser. We demonstrate that polarization-resolved SHG serves as a fast, non-invasive tool to determine the crystal axes in single-layer InSe and to relate the sharp edges of the flake to the armchair and zigzag edges of the crystal structure. Our experiment determines these angles to an accuracy better than $pm$ $0.2^{circ}$. Treating the two-dimensional material as a nonlinear polarizable sheet, we determine a second-order nonlinear sheet polarizability $| chi_{textrm{sheet}}^{(2)}|=(17.9 pm 11.0)times 10^{-20}$ $textrm{m}^2 textrm{V}^{-1}$ for single-layer InSe, corresponding to an effective nonlinear susceptibility value of $| chi_textrm{eff}^{(2)}| approx (223 pm 138) times 10^{-12}$ $textrm{m} textrm{V}^{-1}$ accounting for the sheet thickness ($textrm{d} approx 0.8$ $textrm{nm}$). We demonstrate that the SHG technique can also be applied to encapsulated samples to probe their crystal orientations. The method is therefore suitable for creating high quality van der Waals heterostructures with control over the crystal directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا