ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical and noncritical long range entanglement in the Klein-Gordon field

37   0   0.0 ( 0 )
 نشر من قبل Samuel Marcovitch
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the entanglement between two separated segments in the vacuum state of a free 1D Klein-Gordon field, where explicit computations are performed in the continuum limit of the linear harmonic chain. We show that the entanglement, which we measure by the logarithmic negativity, is finite with no further need for renormalization. We find that the quantum correlations decay much faster than the classical correlations as in the critical limit long range entanglement decays exponentially for separations larger than the size of the segments. As the segments become closer to each other the entanglement diverges as a power law. The noncritical regime manifests richer behavior, as the entanglement depends both on the size of the segments and on their separation. In correspondence with the von Neumann entropy long-range entanglement also distinguishes critical from noncritical systems.

قيم البحث

اقرأ أيضاً

The dynamical symmetries of the two-dimensional Klein-Gordon equations with equal scalar and vector potentials (ESVP) are studied. The dynamical symmetries are considered in the plane and the sphere respectively. The generators of the SO(3) group cor responding to the Coulomb potential, and the SU(2) group corresponding to the harmonic oscillator potential are derived. Moreover, the generators in the sphere construct the Higgs algebra. With the help of the Casimir operators, the energy levels of the Klein-Gordon systems are yielded naturally.
We describe a phase transition for long-range entanglement in a three-dimensional cluster state affected by noise. The partially decohered state is modeled by the thermal state of a suitable Hamiltonian. We find that the temperature at which the enta nglement length changes from infinite to finite is nonzero. We give an upper and lower bound to this transition temperature.
We study the thermodynamic quantities such as the Helmholtz free energy, the mean energy and the specific heat for both the Klein-Gordon, and Dirac equations. Our analyze includes two main subsections: ($i$) statistical functions for the Klein-Gordon equation with a linear potential having Lorentz vector, and Lorentz scalar parts ($ii$) thermodynamic functions for the Dirac equation with a Lorentz scalar, inverse-linear potential by assuming that the scalar potential field is strong ($A gg 1$). We restrict ourselves to the case where only the positive part of the spectrum gives a contribution to the sum in partition function. We give the analytical results for high temperatures.
Whether long-range interactions allow for a form of causality in non-relativistic quantum models remains an open question with far-reaching implications for the propagation of information and thermalization processes. Here, we study the out-of-equili brium dynamics of the one-dimensional transverse Ising model with algebraic long-range exchange coupling. Using a state of the art tensor-network approach, complemented by analytic calculations and considering various observables, we show that a weak form of causality emerges, characterized by non-universal dynamical exponents. While the local spin and spin correlation causal edges are sub-ballistic, the causal region has a rich internal structure, which, depending on the observable, displays ballistic or super-ballistic features. In contrast, the causal region of entanglement entropy is featureless and its edge is always ballistic, irrespective of the interaction range. Our results shed light on the propagation of information in long-range interacting lattice models and pave the way to future experiments, which are discussed.
In this short note we discuss the relation between the so-called Off-Diagonal-Long-Range-Order in many-body interacting quantum systems introduced by C. N. Yang in Rev. Mod. Phys. {bf 34}, 694 (1962) and entanglement. We argue that there is a direct relation between these two concepts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا