Single-crystalline (Lu, Ca)Ba2Cu3O7-d (Lu(Ca)123) whiskers have been successfully grown using the Te-doping method. X-ray diffraction patterns of Lu(Ca)123 whiskers showed sharp (0 0 l) peaks corresponding to REBa2Cu3O7-d phase (RE = rare earth elements). Transport measurements showed that the superconducting transition occurred at 83 K in the obtained whiskers.
Electronic anisotropy was studied for overdoped (Y,Ca)Ba2Cu3O7-d with various doping levels (p). It was found that the pseudogap-like behavior in the resistivity disappear when p exceeds 0.17, independent of the oxygen deficiency. The anisotropy rati
o (g) estimated from upper critical fields showed a rapid decrease at around p = 0.18, approaching g = 3 for p > 0.20.
By lithographically fabricating an optimised Wheatstone bridge geometry, we have been able to make accurate measurements of the resistance of grain boundaries in Y1-xCaxBa2Cu3O7-d between the superconducting transition temperature, Tc, and room tempe
rature. Below Tc the normal state properties were assessed by applying sufficiently high currents. The behaviour of the grain boundary resistance versus temperature and of the conductance versus voltage are discussed in the framework charge transport through a tunnel barrier. The influence of misorientation angle, oxygen content, and calcium doping on the normal state properties is related to changes of the height and shape of the grain boundary potential barrier.
We report flux free growth of superconducting FeSe single crystals by an easy and versatile high temperature melt and slow cooling method for first time. The room temperature XRD on the surface of the piece of such obtained crystals showed single 101
plane of Beta-FeSe tetragonal phase. The bulk powder XRD, being obtained by crushing the part of crystal chunk showed majority tetragonal and minority FeSe hexagonal crystalline phases. Detailed HRTEM images along with SAED (selected area electron diffraction) showed the abundance of both majority and minority FeSe phases. Both transport (RT) and magnetization (MT) exhibited superconductivity at below around 10K. Interestingly, the magnetization signal of these crystals is dominated by the magnetism of minority magnetic phase, and hence the isothermal magnetization (MH) at 4K was seen to be ferromagnetic (FM) like. Transport (R-T) measurements under magnetic field showed superconductivity onset at below 12K, and R = 0 (Tc) at 9K. Superconducting transition temperature (Tc) decreases with applied field to around 6K at 7Tesla, with dTc/dH of 0.4K/Tesla, giving rise to an Hc2 value of around 50 Tesla, 30 Tesla and 20 Tesla for Rn = 90, 50 and 10 percent respectively. FeSe single crystal activation energy is calculated from Thermally Activated Flux Flow (TAFF) model which is found to decreases with field.
Resistivity and magnetic susceptibility measurements under external pressure were performed on single-crystals NaFe1-xCoxAs (x=0, 0.01, 0.028, 0.075, 0.109). The maximum Tc enhanced by pressure in both underdoped and optimally doped NaFe1-xCoxAs is t
he same, as high as 31 K. The overdoped sample with x = 0.075 also shows a positive pressure effect on Tc, and an enhancement of Tc by 13 K is achieved under pressure of 2.3 GPa. All the superconducting samples show large positive pressure coefficient on superconductivity, being different from Ba(Fe1-xCox)2As2. However, the superconductivity cannot be induced by pressure in heavily overdoped non-superconducting NaFe0.891Co0.109As. These results provide evidence for that the electronic structure is much different between superconducting and heavily overdoped non-superconducting NaFe1-xCoxAs, being consistent with the observation by angle-resolved photoemission spectroscopy.
F-substituted LaOBiSe2 single crystals were grown using CsCl flux. The obtained single crystals showed a plate-like shape with a size of about 1.0 mm square. The c-axis lattice constant of the grown crystals was determined to be 14.114(3) {AA}. The s
uperconducting critical temperature of the single crystal was approximately 3.5 K. The superconducting anisotropies were determined to be 49 and 24 using the upper critical field and the effective mass model, respectively.