ﻻ يوجد ملخص باللغة العربية
By lithographically fabricating an optimised Wheatstone bridge geometry, we have been able to make accurate measurements of the resistance of grain boundaries in Y1-xCaxBa2Cu3O7-d between the superconducting transition temperature, Tc, and room temperature. Below Tc the normal state properties were assessed by applying sufficiently high currents. The behaviour of the grain boundary resistance versus temperature and of the conductance versus voltage are discussed in the framework charge transport through a tunnel barrier. The influence of misorientation angle, oxygen content, and calcium doping on the normal state properties is related to changes of the height and shape of the grain boundary potential barrier.
Using an optimized bridge geometry we have been able to make accurate measurements of the properties of YBa2Cu3O7-delta grain boundaries above Tc. The results show a strong dependence of the change of resistance with temperature on grain boundary ang
Electronic anisotropy was studied for overdoped (Y,Ca)Ba2Cu3O7-d with various doping levels (p). It was found that the pseudogap-like behavior in the resistivity disappear when p exceeds 0.17, independent of the oxygen deficiency. The anisotropy rati
The purpose of this article is to discuss a view concerning key datasets of the properties of grain boundaries in high-Tc superconductors that was recently expressed in Ref. 1. The reference also criticizes our research. Using examples I disprove this criticism.
We show that despite the low anisotropy, strong vortex pinning and high irreversibility field Hirr close to the upper critical field Hc2 of Ba(Fe1-xCox)2As2, the critical current density Jgb across [001] tilt grain boundaries (GBs) of thin film Ba(Fe
We report the discovery of superconductivity and detailed normal-state physical properties of RbV3Sb5 single crystals with V kagome lattice. RbV3Sb5 single crystals show a superconducting transition at Tc ~ 0.92 K. Meanwhile, resistivity, magnetizati