ﻻ يوجد ملخص باللغة العربية
In this paper we provide a provably convergent algorithm for the multivariate Gaussian Maximum Likelihood version of the Behrens--Fisher Problem. Our work builds upon a formulation of the log-likelihood function proposed by Buot and Richards citeBR. Instead of focusing on the first order optimality conditions, the algorithm aims directly for the maximization of the log-likelihood function itself to achieve a global solution. Convergence proof and complexity estimates are provided for the algorithm. Computational experiments illustrate the applicability of such methods to high-dimensional data. We also discuss how to extend the proposed methodology to a broader class of problems. We establish a systematic algebraic relation between the Wald, Likelihood Ratio and Lagrangian Multiplier Test ($Wgeq mathit{LR}geq mathit{LM}$) in the context of the Behrens--Fisher Problem. Moreover, we use our algorithm to computationally investigate the finite-sample size and power of the Wald, Likelihood Ratio and Lagrange Multiplier Tests, which previously were only available through asymptotic results. The methods developed here are applicable to much higher dimensional settings than the ones available in the literature. This allows us to better capture the role of high dimensionality on the actual size and power of the tests for finite samples.
This paper is concerned with the problem of comparing the population means of two groups of independent observations. An approximate randomization test procedure based on the test statistic of Chen & Qin (2010) is proposed. The asymptotic behavior of
For in vivo research experiments with small sample sizes and available historical data, we propose a sequential Bayesian method for the Behrens-Fisher problem. We consider it as a model choice question with two models in competition: one for which th
This paper deals with a new Bayesian approach to the standard one-sample $z$- and $t$- tests. More specifically, let $x_1,ldots,x_n$ be an independent random sample from a normal distribution with mean $mu$ and variance $sigma^2$. The goal is to test
We consider the distinct elements problem, where the goal is to estimate the number of distinct colors in an urn containing $ k $ balls based on $n$ samples drawn with replacements. Based on discrete polynomial approximation and interpolation, we pro
In this paper, we show how concentration inequalities for Gaussian quadratic form can be used to propose exact confidence intervals of the Hurst index parametrizing a fractional Brownian motion. Both cases where the scaling parameter of the fractiona