ترغب بنشر مسار تعليمي؟ اضغط هنا

High energy resolution hard X-ray and gamma-ray imagers using CdTe diode devices

67   0   0.0 ( 0 )
 نشر من قبل Shin Watanabe
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We developed CdTe double-sided strip detectors (DSDs or cross strip detectors) and evaluated their spectral and imaging performance for hard X-rays and gamma-rays. Though the double-sided strip configuration is suitable for imagers with a fine position resolution and a large detection area, CdTe diode DSDs with indium (In) anodes have yet to be realized due to the difficulty posed by the segmented In anodes. CdTe diode devices with aluminum (Al) anodes were recently established, followed by a CdTe device in which the Al anodes could be segmented into strips. We developed CdTe double-sided strip devices having Pt cathode strips and Al anode strips, and assembled prototype CdTe DSDs. These prototypes have a strip pitch of 400 micrometer. Signals from the strips are processed with analog ASICs (application specific integrated circuits). We have successfully performed gamma-ray imaging spectroscopy with a position resolution of 400 micrometer. Energy resolution of 1.8 keV (FWHM: full width at half maximum) was obtained at 59.54 keV. Moreover, the possibility of improved spectral performance by utilizing the energy information of both side strips was demonstrated. We designed and fabricated a new analog ASIC, VA32TA6, for the readout of semiconductor detectors, which is also suitable for DSDs. A new feature of the ASIC is its internal ADC function. We confirmed this function and good noise performance that reaches an equivalent noise charge of 110 e- under the condition of 3-4 pF input capacitance.



قيم البحث

اقرأ أيضاً

214 - David M. Smith 2010
The detection of photons above 10 keV through MeV and GeV energies is challenging due to the penetrating nature of the radiation, which can require large detector volumes, resulting in correspondingly high background. In this energy range, most detec tors in space are either scintillators or solid-state detectors. The choice of detector technology depends on the energy range of interest, expected levels of signal and background, required energy and spatial resolution, particle environment on orbit, and other factors. This section covers the materials and configurations commonly used from 10 keV to > 1 GeV.
Since the initial exploration of soft gamma-ray sky in the 60s, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars and black holes are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical process. This is why most of the projects for the next generation of space missions covering the tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The hard X-ray imaging spectrometer module, developed in CEA with the generic name of Caliste module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility. These results, obtained at 200-300 keV, demonstrate their capability to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. Applying a selection to our data set, equivalent to select 90 degrees Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78. The polarization angle and fraction are derived with accuracies of approximately 1 degree and 5%. The modulation factor remains larger than 0.4 when essentially no selection is made at all on the data. These results prove that the Caliste-256 modules have performances allowing them to be excellent candidates as detectors with polarimetric capabilities, in particular for future space missions.
The GALILEO $gamma$-ray spectrometer has been constructed at the Legnaro National Laboratory of INFN (LNL-INFN). It can be coupled to advanced ancillary devices which allows nuclear structure studies employing the variety of in-beam $gamma$-ray spect roscopy methods. Such studies benefit from reactions induced by the intense stable beams delivered by the Tandem-ALPI-PIAVE accelerator complex and by the radioactive beams which will be provided by the SPES facility. In this paper we outline two experiments performed within the experimental campaign at GALILEO coupled to the EUCLIDES Si-ball and the Neutron Wall array. The first one was aimed at spectroscopic studies in A=31 mirror nuclei and the second one at measurements of lifetimes of excited states in nuclei in the vicinity of $^{100}$Sn.
Imaging the magnetic structure of a material is essential to understanding the influence of the physical and chemical microstructure on its magnetic properties. Magnetic imaging techniques, however, have up to now been unable to probe 3D micrometer-s ized systems with nanoscale resolution. Here we present the imaging of the magnetic domain configuration of a micrometre-thick FeGd multilayer with hard X-ray dichroic ptychography at energies spanning both the Gd L3 edge and the Fe K edge, providing a high spatial resolution spectroscopic analysis of the complex X-ray magnetic circular dichroism. With a spatial resolution reaching 45 nm, this advance in hard X-ray magnetic imaging is the first step towards the investigation of buried magnetic structures and extended three-dimensional magnetic systems at the nanoscale.
High energy emissions from supernovae (SNe), originated from newly formed radioactive species, provide direct evidence of nucleosynthesis at SN explosions. However, observational difficulties in the MeV range have so far allowed the signal detected o nly from the extremely nearby core-collapse SN 1987A. No solid detection has been reported for thermonuclear SNe Ia, despite the importance of the direct confirmation of the formation of 56Ni, which is believed to be a key ingredient in their nature as distance indicators. In this paper, we show that the new generation hard X-ray and soft gamma-ray instruments, on board Astro-H and NuStar, are capable of detecting the signal, at least at a pace of once in a few years, opening up this new window for studying SN explosion and nucleosynthesis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا