ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure dependence of the single particle excitation in the charge-density-wave CeTe$_3$ system

310   0   0.0 ( 0 )
 نشر من قبل Degiorgi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new data on the pressure dependence at 300 K of the optical reflectivity of CeTe$_3$, which undergoes a charge-density-wave (CDW) phase transition well above room temperature. The collected data cover an unprecedented broad spectral range from the infrared up to the ultraviolet, which allows a robust determination of the gap as well as of the fraction of the Fermi surface affected by the formation of the CDW condensate. Upon compressing the lattice there is a progressive closing of the gap inducing a transfer of spectral weight from the gap feature into the Drude component. At frequencies above the CDW gap we also identify a power-law behavior, consistent with findings along the $R$Te$_3$ series (i.e., chemical pressure) and suggestive of a Tomonaga-Luttinger liquid scenario at high energy scales. This newest set of data is placed in the context of our previous investigations of this class of materials and allows us to revisit important concepts for the physics of CDW state in layered-like two-dimensional systems.



قيم البحث

اقرأ أيضاً

137 - F. Pfuner , P. Lerch , J.-H. Chu 2010
We provide optical reflectivity data collected over a broad spectral range and as a function of temperature on the ErTe$_3$ and HoTe$_3$ materials, which undergo two consecutive charge-density-wave (CDW) phase transitions at $T_{CDW1}$= 265 and 288 K and at $T_{CDW2}$= 157 and 110 K, respectively. We observe the temperature dependence of both the Drude component, due to the itinerant charge carriers, and the single-particle peak, ascribed to the charge-density-wave gap excitation. The CDW gap progressively opens while the metallic component gets narrow with decreasing temperature. An important fraction of the whole Fermi surface seems to be affected by the CDW phase transitions. It turns out that the temperature and the previously investigated pressure dependence of the most relevant CDW parameters share several common features and behaviors. Particularly, the order parameter of the CDW state is in general agreement with the predictions of the BCS theory.
184 - B. F. Hu , P. Zheng , R. H. Yuan 2010
We performed optical spectroscopy measurement on single crystal of CeTe$_3$, a rare-earth element tri-telluride charge density wave (CDW) compound. The optical spectra are found to display very strong temperature dependence. Besides a large and prono unced CDW energy gap being present already at room temperature as observed in earlier studies, the present measurement revealed the formation of another energy gap at smaller energy scale at low temperature. The second CDW gap removes the electrons near E$_F$ which undergo stronger scattering. The study yields evidence for the presence of multiple CDW orders or strong fluctuations in the light rare-earth element tri-telluride.
We investigate the pressure dependence of the optical properties of CeTe$_3$, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pres sures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of $R$Te$_3$.
We report the pressure dependence of the optical response of LaTe$_2$, which is deep in the charge-density-wave (CDW) ground state even at 300 K. The reflectivity spectrum is collected in the mid-infrared spectral range at room temperature and at pre ssures between 0 and 7 GPa. We extract the energy scale due to the single particle excitation across the CDW gap and the Drude weight. We establish that the gap decreases upon compressing the lattice, while the Drude weight increases. This signals a reduction in the quality of nesting upon applying pressure, therefore inducing a lesser impact of the CDW condensate on the electronic properties of LaTe$_2$. The consequent suppression of the CDW gap leads to a release of additional charge carriers, manifested by the shift of weight from the gap feature into the metallic component of the optical response. On the contrary, the power-law behavior, seen in the optical conductivity at energies above the gap excitation and indicating a weakly interacting limit within the Tomonaga-Luttinger liquid scenario, seems to be only moderately dependent on pressure.
We present a state-of-the-art x-ray diffraction study of the charge density wave order in 1T-TaS2 as a function of temperature and pressure. Our results prove that the charge density wave, which we characterize in terms of wave vector, amplitude and the coherence length, indeed exists in the superconducting region of the phase diagram. The data further imply that the ordered charge density wave structure as a whole becomes superconducting at low temperatures, i. e, superconductivity and charge density wave coexist on a macroscopic scale in real space. This result is fundamentally different from a previously proposed separation of superconducting and insulating regions in real space and, instead, provides evidence that the superconducting and the charge density wave gap exist in separate regions of reciprocal space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا