ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of Dipoles and Quantum Phases in Noncommutative Coordinates

55   0   0.0 ( 0 )
 نشر من قبل Omer Faruk Dayi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Omer F. Dayi




اسأل ChatGPT حول البحث

The dynamics of a spin--1/2 neutral particle possessing electric and magnetic dipole moments interacting with external electric and magnetic fields in noncommutative coordinates is obtained. Noncommutativity of space is interposed in terms of a semiclassical constrained Hamiltonian system. The relation between the quantum phase acquired by a particle interacting with an electromagnetic field and the (semi)classical force acting on the system is examined and generalized to establish a formulation of the quantum phases in noncommutative coordinates. The general formalism is applied to physical systems yielding the Aharonov-Bohm, Aharonov-Casher, He-McKellar-Wilkens and Anandan phases in noncommutative coordinates. Bounds for the noncommutativity parameter theta are derived comparing the deformed phases with the experimental data on the Aharonov-Bohm and Aharonov-Casher phases.


قيم البحث

اقرأ أيضاً

58 - O.F. Dayi , A. Jellal 2001
We consider electrons in uniform external magnetic and electric fields which move on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of the related Hamiltonian are obtained. We derive the electric current whose expectation val ue gives the Hall effect in terms of an effective magnetic field. We present a receipt to find the action which can be utilized in path integrals for noncommuting coordinates. In terms of this action we calculate the related Aharonov--Bohm phase and show that it also yields the same effective magnetic field. When magnetic field is strong enough this phase becomes independent of magnetic field. Measurement of it may give some hints on spatial noncommutativity. The noncommutativity parameter theta can be tuned such that electrons moving in noncommutative coordinates are interpreted as either leading to the fractional quantum Hall effect or composite fermions in the usual coordinates.
96 - O. F. Dayi , M. Elbistan 2009
A semiclassical constrained Hamiltonian system which was established to study dynamical systems of matrix valued non-Abelian gauge fields is employed to formulate spin Hall effect in noncommuting coordinates at the first order in the constant noncomm utativity parameter theta . The method is first illustrated by studying the Hall effect on the noncommutative plane in a gauge independent fashion. Then, the Drude model type and the Hall effect type formulations of spin Hall effect are considered in noncommuting coordinates and theta deformed spin Hall conductivities which they provide are acquired. It is shown that by adjusting theta different formulations of spin Hall conductivity are accomplished. Hence, the noncommutative theory can be envisaged as an effective theory which unifies different approaches to similar physical phenomena.
We study the quantum backflow problem in the noncommutative plane. In particular, we have considered a charged particle with and without an oscillator interaction with noncommuting momentum operators and examined angular momentum backflow in each cas e and how they differ from each other. We also propose a probability associated with the occurence of angular momentum backflow and investigate whether or not the probability depends on a physical parameter, namely the magnetic field.
53 - M. Hayakawa 2000
Perturbative aspects of ultraviolet and infrared dynamics of noncommutative quantum field theory is examined in detail. It is observed that high loop momentum contribution to the nonplanar diagram develops a new infrared singularity with respect to t he external momentum. This singular behavior is closely related to that of ultraviolet divergence of planar diagram. It is also shown that such a relation is precise in noncommutative Yang-Mills theory, but the same feature does not persist in noncommutative generalization of QED.
109 - Kazuo Fujikawa 2008
A salient feature of the Schr{o}dinger equation is that the classical radial momentum term $p_{r}^{2}$ in polar coordinates is replaced by the operator $hat{P}^{dagger}_{r} hat{P}_{r}$, where the operator $hat{P}_{r}$ is not hermitian in general. Thi s fact has important implications for the path integral and semi-classical approximations. When one defines a formal hermitian radial momentum operator $hat{p}_{r}=(1/2)((frac{hat{vec{x}}}{r}) hat{vec{p}}+hat{vec{p}}(frac{hat{vec{x}}}{r}))$, the relation $hat{P}^{dagger}_{r} hat{P}_{r}=hat{p}_{r}^{2}+hbar^{2}(d-1)(d-3)/(4r^{2})$ holds in $d$-dimensional space and this extra potential appears in the path integral formulated in polar coordinates. The extra potential, which influences the classical solutions in the semi-classical treatment such as in the analysis of solitons and collective modes, vanishes for $d=3$ and attractive for $d=2$ and repulsive for all other cases $dgeq 4$. This extra term induced by the non-hermitian operator is a purely quantum effect, and it is somewhat analogous to the quantum anomaly in chiral gauge theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا