ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolution of two stellar populations in globular clusters I. The dynamical mixing timescale

36   0   0.0 ( 0 )
 نشر من قبل Thibaut Decressin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the long-term dynamical evolution of two distinct stellar populations of low-mass stars in globular clusters in order to study whether the energy equipartition process can explain the high number of stars harbouring abundance anomalies seen in globular clusters. We analyse N-body models by artificially dividing the low-mass stars (m<0.9 Msun) into two populations: a small number of stars (second generation) consistent with an invariant IMF and with low specific energies initially concentrated towards the cluster-centre mimic stars with abundance anomalies. These stars form from the slow winds of fast-rotating massive stars. The main part of low-mass (first generation) stars has the pristine composition of the cluster. We study in detail how the two populations evolve under the influence of two-body elaxation and the tidal forces due to the host galaxy.Stars with low specific energy initially concentrated toward the cluster centre need about two relaxation times to achieve a complete homogenisation throughout the cluster. For realistic globular clusters, the number ratio between the two populations increases only by a factor 2.5 due to the preferential evaporation of the population of outlying first generation stars. We also find that the loss of information on the stellar orbital angular momentum occurs on the same timescale as spatial homogenisation.

قيم البحث

اقرأ أيضاً

Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters may have formed hundreds to thousands of stellar-mass black holes, the remnants of stars with initial masses from $sim 20 - 100, M_odot$. Birth kicks from supernova explosions may eject some black holes from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of globular clusters containing large numbers of stellar black holes. We describe numerical results for 42 models, covering a range of realistic initial conditions, including up to $1.6times10^6$ stars. In almost all models we find that significant numbers of black holes (up to $sim10^3$) are retained all the way to the present. This is in contrast to previous theoretical expectations that most black holes should be ejected dynamically within a few Gyr. The main reason for this difference is that core collapse driven by black holes (through the Spitzer mass segregation instability) is easily reverted through three-body processes, and involves only a small number of the most massive black holes, while lower-mass black holes remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar black holes does not lead to a long-term physical separation of most black holes into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several black hole X-ray binary candidates in Galactic globular clusters, our results suggest that stellar black holes could still be present in large numbers in many globular clusters today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.
In this paper we study the long-term dynamical evolution of multiple-population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars.In previous studies we have suggested that SG stars f ormed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration.Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: 1) a flat inner part; 2) a declining part in which FG stars are increasingly dominant; and 3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). The radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the FG.[abridged]
We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations (vanDyk et al. 2009, Stein et al. 2013). Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties---age, metallicity, helium abundance, distance, absorption, and initial mass---are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and also show model misspecification can potentially be identified. As a proof of concept, we analyze the two stellar populations of globular cluster NGC 5272 using our model and methods. (BASE-9 is available from GitHub: https://github.com/argiopetech/base/releases).
We started a photometric survey using the WFC3/UVIS instrument onboard the Hubble Space Telescope to search for multiple populations within Magellanic Cloud star clusters at various ages. In this paper, we introduce this survey. As first results of t his programme, we also present multi-band photometric observations of NGC 121 in different filters taken with the WFC3/UVIS and ACS/WFC instruments. We analyze the colour-magnitude diagram (CMD) of NGC 121, which is the only classical globular cluster within the Small Magellanic Cloud. Thereby, we use the pseudo-colour C_(F336W,F438W,F343N)=(F336W-F438W)-(F438W-F343N) to separate populations with different C and N abundances. We show that the red giant branch splits up in two distinct populations when using this colour combination. NGC 121 thus appears to be similar to Galactic globular clusters in hosting multiple populations. The fraction of enriched stars (N rich, C poor) in NGC 121 is about 32% +/- 3%, which is lower than the median fraction found in Milky Way globular clusters. The enriched population seems to be more centrally concentrated compared to the primordial one. These results are consistent with the recent results by Dalessandro et al. (2016). The morphology of the Horizontal Branch in a CMD using the optical filters F555W and F814W is best produced by a population with a spread in Helium of Delta(Y) =0.025+/-0.005.
169 - A. Javier Cenarro 2007
We present high-quality, Keck spectroscopic data for a sample of 20 globular clusters (GCs) in the massive E0 galaxy NGC1407. A subset of twenty line-strength indices of the Lick/IDS system have been measured for both the GC system and the central in tegrated star-light of the galaxy. Ages, metallicities and [alpha/Fe] ratios have been derived using several different approaches. The majority GCs in NGC1407 studied are old, follow a tight metallicity sequence reaching values slightly above solar, and exhibit mean [alpha/Fe] ratios of ~ 0.3 dex. In addition, three GCs are formally derived to be young (~ 4 Gyr), but we argue that they are actually old GCs hosting blue horizontal branches. We report, for the first time, evidence for the existence of two chemically-distinct subpopulations of metal-rich (MR) GCs. We find some MR GCs exhibit significantly larger [Mg/Fe] and [C/Fe] ratios. Different star formation time-scales are proposed to explain the correlation between Mg and C abundances. We also find striking CN overabundances over the entire GC metallicity range. Interestingly, the behavior of C and N in metal-poor (MP) GCs clearly deviates from the one in MR GCs. In particular, for MR GCs, N increases dramatically while C essentially saturates. This may be interpreted as a consequence of the increasing importance of the CNO cycle with increasing metallicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا