ترغب بنشر مسار تعليمي؟ اضغط هنا

Torque anomalies at magnetization plateaux in quantum magnets with Dzyaloshinskii-Moriya interactions

44   0   0.0 ( 0 )
 نشر من قبل Salvatore R. Manmana
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of Dzyaloshinskii-Moriya (DM) interactions on torque measurements of quantum magnets with magnetization plateaux in the context of a frustrated spin-1/2 ladder. Using extensive DMRG simulations, we show that the DM contribution to the torque is peaked at the critical fields, and that the total torque is non-monotonous if the DM interaction is large enough compared to the g-tensor anisotropy. More remarkably, if the DM vectors point in a principal direction of the g-tensor, torque measurements close to this direction will show well defined peaks even for small DM interaction, leading to a very sensitive way to detect the critical fields. We propose to test this effect in the two-dimensional plateau system SrCu$_2$(BO$_3$)$_2$.

قيم البحث

اقرأ أيضاً

In thin magnetic layers with structural inversion asymmetry and spin-orbit coupling, a Dzyaloshinskii-Moriya interaction arises at the interface. When a spin wave current ${bf j}_m$ flows in a system with a homogeneous magnetization {bf m}, this inte raction produces an effective field-like torque on the form ${bf T}_{rm FL}propto{bf m}times({bf z}times{bf j}_m)$ as well as a damping-like torque, ${bf T}_{rm DL}propto{bf m}times[({bf z}times{bf j}_m)times{bf m}]$ in the presence of spin-wave relaxation (${bf z}$ is normal to the interface). These torques mediated by the magnon flow can reorient the time-averaged magnetization direction and display a number of similarities with the torques arising from the electron flow in a magnetic two dimensional electron gas with Rashba spin-orbit coupling. This magnon-mediated spin-orbit torque can be efficient in the case of magnons driven by a thermal gradient.
Chiral magnetic Mn$_x$Fe$_{1-x}$Ge compounds have an antisymmetric exchange interaction that is tunable with the manganese stoichiometric fraction, $x$. Although millimeter-scale, polycrystalline bulk samples of this family of compounds have been produced, thin-fi
Localized magnons states, due to flat bands in the spectrum, is an intensely studied phenomenon and can be found in many frustrated magnets of different spatial dimensionality. The presence of Dzyaloshinskii-Moriya (DM) interactions may change radica lly the behavior in such systems. In this context, we study a paradigmatic example of a one-dimensional frustrated antiferromagnet, the sawtooth chain in the presence of DM interactions. Using both path integrals methods and numerical Density Matrix Renormalization Group, we revisit the physics of localized magnons and determine the consequences of the DM interaction on the ground state. We have studied the spin current behavior, finding three different regimes. First, a Luttinger-liquid regime where the spin current shows a step behavior as a function of parameter $D$, at a low magnetic field. Increasing the magnetic field, the system is in the Meissner phase at the $m = 1/2$ plateau, where the spin current is proportional to the DM parameter. Finally, further increasing the magnetic field and for finite $D$ there is a small stiffness regime where the spin current shows, at fixed magnetization, a jump to large values at $D = 0$, a phenomenon also due to the flat band.
249 - R. Yanes , J. Jackson , L. Udvardi 2013
The exchange bias effect in compensated IrMn3/Co(111) system is studied using multiscale modeling from ab initio to atomistic calculations. We evaluate numerically the out-of-plane hysteresis loops of the bi-layer for different thickness of the ferro magnetic layer. The results show the existence of a perpendicular exchange bias field and an enhancement of the coercivity of the system. In order to elucidate the possible origin of the exchange bias, we analyze the hysteresis loops of a selected bi-layer by tuning the different contributions to the exchange interactions across the interface. Our results indicate that the exchange bias is primarily induced by the Dzyaloshinskii-Moriya interactions, while the coercivity is increased mainly due to a spin-flop mechanism.
Vortex states in magnetic nanodisks are essentially affected by surface/interface induced Dzyaloshinskii-Moriya interactions. Within a micromagnetic approach we calculate the equilibrium sizes and shape of the vortices as functions of magnetic field, the material and geometrical parameters of nanodisks. It was found that the Dzyaloshinskii-Moriya coupling can considerably increase sizes of vortices with right chirality and suppress vortices with opposite chirality. This allows to form a bistable system of homochiral vortices as a basic element for storage applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا