ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of itinerant magnets in a classical spin fluctuation model

32   0   0.0 ( 0 )
 نشر من قبل Aleksander Wysocki
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermodynamics of itinerant magnets is studied using a classical model with one parameter characterizing the degree of itinerancy. Monte Carlo simulations for bcc and fcc lattices are compared with the mean-field approximation and with the Onsager cavity field approximation extended to itinerant systems. The qualitative features of thermodynamics are similar to the known results of the functional integral method. It is found that magnetic short-range order is weak and almost independent on the degree of itinerancy, and the mean-field approximation describes the thermodynamics reasonably well. Ambiguity of the phase space measure for classical models is emphasized. The Onsager cavity field method is extended to itinerant systems, which involves the renormalization of both the Weiss field and the on-site exchange interaction. The predictions of this approximation are in excellent agreement with Monte Carlo results.

قيم البحث

اقرأ أيضاً

We study a classical integrable (Neumann) model describing the motion of a particle on the sphere, subject to harmonic forces. We tackle the problem in the infinite dimensional limit by introducing a soft version in which the spherical constraint is imposed only on average over initial conditions. We show that the Generalized Gibbs Ensemble captures the long-time averages of the soft model. We reveal the full dynamic phase diagram with extended, quasi-condensed, coordinate-, and coordinate and momentum-condensed phases. The scaling properties of the fluctuations allow us to establish in which cases the strict and soft spherical constraints are equivalent, confirming the validity of the GGE hypothesis for the Neumann model on a large portion of the dynamic phase diagram.
We experimentally study a piezoelectric energy harvester driven by broadband random vibrations. We show that a linear model, consisting of an underdamped Langevin equation for the dynamics of the tip mass, electromechanically coupled with a capacitor and a load resistor, can accurately describe the experimental data. In particular, the theoretical model allows us to define fluctuating currents and to study the stochastic thermodynamics of the system, with focus on the distribution of the extracted work over different time intervals. Our analytical and numerical analysis of the linear model is successfully compared to the experiments
Quantum to classical crossover is a fundamental question in dynamics of quantum many-body systems. In frustrated magnets, for example, it is highly non-trivial to describe the crossover from the classical spin liquid with a macroscopically-degenerate ground-state manifold, to the quantum spin liquid phase with fractionalized excitations. This is an important issue as we often encounter the demand for a sharp distinction between the classical and quantum spin liquid behaviors in real materials. Here we take the example of the classical spin liquid in a frustrated magnet with novel bond-dependent interactions to investigate the classical dynamics, and critically compare it with quantum dynamics in the same system. In particular, we focus on signatures in the dynamical spin structure factor. Combining Landau-Lifshitz dynamics simulations and the analytical Martin-Siggia-Rose (MSR) approach, we show that the low energy spectra are described by relaxational dynamics and highly constrained by the zero mode structure of the underlying degenerate classical manifold. Further, the higher energy spectra can be explained by precessional dynamics. Surprisingly, many of these features can also be seen in the dynamical structure factor in the quantum model studied by finite-temperature exact diagonalization. We discuss the implications of these results, and their connection to recent experiments on frustrated magnets with strong spin-orbit coupling.
Systems with interacting degrees of freedom play a prominent role in stochastic thermodynamics. Our aim is to use the concept of detached path probabilities and detached entropy production for bipartite Markov processes and elaborate on a series of s pecial cases including measurement-feedback systems, sensors and hidden Markov models. For these special cases we show that fluctuation theorems involving the detached entropy production recover known results which have been obtained separately before. Additionally, we show that the fluctuation relation for the detached entropy production can be used in model selection for data stemming from a hidden Markov model. We discuss the relation to previous approaches including those which use information flow or learning rate to quantify the influence of one subsystem on the other. In conclusion, we present a complete framework with which to find fluctuation relations for coupled systems.
We analyze fluctuation-dissipation relations in the Backgammon model: a system that displays glassy behavior at zero temperature due to the existence of entropy barriers. We study local and global fluctuation relations for the different observables i n the model. For the case of a global perturbation we find a unique negative fluctuation-dissipation ratio that is independent of the observable and which diverges linearly with the waiting time. This result suggests that a negative effective temperature can be observed in glassy systems even in the absence of thermally activated processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا