ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic hyperthermia in single-domain monodisperse FeCo nanoparticles: Evidences for Stoner-Wohlfarth behaviour and large losses

129   0   0.0 ( 0 )
 نشر من قبل Julian Carrey
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on hyperthermia measurements on a colloidal solution of 15 nm monodisperse FeCo nanoparticles (NPs). Losses as a function of the magnetic field display a sharp increase followed by a plateau, which is what is expected for losses of ferromagnetic single-domain NPs. The frequency dependence of the coercive field is deduced from hyperthermia measurement and is in quantitative agreement with a simple model of non-interacting NPs. The measured losses (1.5 mJ/g) compare to the highest of the literature, though the saturation magnetization of the NPs is well below the bulk one.



قيم البحث

اقرأ أيضاً

The influence of a transverse static magnetic field on the magnetic hyperthermia properties is studied on a system of large-losses ferromagnetic FeCo nanoparticles. The simultaneous measurement of the high-frequency hysteresis loops and of the temper ature rise provides an interesting insight into the losses and heating mechanisms. A static magnetic field of only 40 mT is enough to cancel the heating properties of the nanoparticles, a result reproduced using numerical simulations of hysteresis loops. These results cast doubt on the possibility to perform someday magnetic hyperthermia inside a magnetic resonance imaging setup.
We describe a low-cost and simple setup for hyperthermia measurements on colloidal solutions of magnetic nanoparticles (ferrofluids) with a frequency-adjustable magnetic field in the range 5-500 kHz produced by an electromagnet. By optimizing the gen eral conception and each component (nature of the wires, design of the electromagnet), a highly efficient setup is obtained. For instance, in a useful gap of 1.1 cm, a magnetic field of 4.8 mT is generated at 100 kHz and 500 kHz with an output power of 3.4 W and 75 W, respectively. A maximum magnetic field of 30 mT is obtained at 100 kHz. The temperature of the colloidal solution is measured using optical fiber sensors. To remove contributions due to heating of the electromagnet, a differential measurement is used. In this configuration the sensitivity is better than 1.5 mW at 100 kHz and 19.3 mT. This setup allows one to measure weak heating powers on highly diluted colloidal solutions. The hyperthermia characteristics of a solution of Fe nanoparticles are described, where both the magnetic field and the frequency dependence of heating power have been measured.
We report on the magnetic and hyperthermia properties of iron nanoparticles synthesized by organometallic chemistry. They are 5.5 nm in diameter and display a saturation magnetization close to the bulk one. Magnetic properties are dominated by the co ntribution of aggregates of nanoparticles with respect to individual isolated nanoparticles. Alternative susceptibility measurements are been performed on a low interacting system obtained after eliminating the aggregates by centrifugation. A quantitative analysis using the Gittleman s model allow a determination of the effective anisotropy Keff = 1.3 * 10^5 J.m^{-3}, more than two times the magnetocristalline value of bulk iron. Hyperthermia measurements are performed on agglomerates of nanoparticles at a magnetic field up to 66 mT and at frequencies in the range 5-300 kHz. Maximum measured SAR is 280 W/g at 300 kHz and 66 mT. Specific absorption rate (SAR) displays a square dependence with the magnetic field below 30 mT but deviates from this power law at higher value. SAR is linear with the applied frequency for mu_0H=19 mT. The deviations from the linear response theory are discussed. A refined estimation of the optimal size of iron nanoparticles for hyperthermia applications is provided using the determined effective anisotropy value.
In Specific Power Absorption (SPA) models for Magnetic Fluid Hyperthermia (MFH) experiments, the magnetic relaxation time of the nanoparticles (NPs) is known to be a fundamental descriptor of the heating mechanisms. The relaxation time is mainly dete rmined by the interplay between the magnetic properties of the NPs and the rheological properties of NPs environment. Although the role of magnetism in MFH has been extensively studied, the thermal properties of the NPs medium and their changes during of MFH experiments have been so far underrated. Here, we show that ZnxFe3-xO4 NPs dispersed through different with phase transition in the temperature range of the experiment: clarified butter oil (CBO) and paraffin. These systems show non-linear behavior of the heating rate within the temperature range of the MFH experiments. For CBO, a fast increase at $306 K$ associated to changes in the viscosity (texteta(T)) and specific heat (c_p(T)) of the medium below and above its melting temperature. This increment in the heating rate takes place around $318 K$ for paraffin. Magnetic and morphological characterizations of NPs together with the observed agglomeration of the nanoparticles above $306 K$ indicate that the fast increase in MFH curves could not be associated to a change in the magnetic relaxation mechanism, with Neel relaxation being dominant. In fact, successive experiment runs performed up to temperatures below and above the CBO melting point resulted in different MFH curves due to agglomeration of NPs driven by magnetic field inhomogeneity during the experiments. Similar effects were observed for paraffin. Our results highlight the relevance of the NPs mediums thermodynamic properties for an accurate measurement of the heating efficiency for in vitro and in vivo environments, where the thermal properties are largely variable within the temperature window of MFH experiments.
Magnetic nanoparticle based hyperthermia emerged as a potential tool for treating malignant tumours. The efficiency of the method relies on the knowledge of magnetic properties of the samples; in particular, knowledge of the frequency dependent compl ex magnetic susceptibility is vital to optimize the irradiation conditions and to provide feedback for material science developments. We study the frequency-dependent magnetic susceptibility of an aqueous ferrite suspension for the first time using non-resonant and resonant radiofrequency reflectometry. We identify the optimal measurement conditions using a standard solenoid coil, which is capable of providing the complex magnetic susceptibility up to 150 MHz. The result matches those obtained from a radiofrequency resonator for a few discrete frequencies. The agreement between the two different methods validates our approach. Surprisingly, the dynamic magnetic susceptibility cannot be explained by an exponential magnetic relaxation behavior even when we consider a particle size-dependent distribution of the relaxation parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا