ﻻ يوجد ملخص باللغة العربية
We present an efficient diagrammatic method to describe nonlocal correlation effects in lattice fermion Hubbard-like models, which is based on a change of variables in the Grassmann path integrals. The new fermions are dual to the original ones and correspond to weakly interacting quasiparticles in the case of strong local correlations in the Hubbard model. The method starts with dynamical mean-field theory as a zeroth-order approximation and includes non-local effects in a perturbative way. In contrast to cluster approaches, this method utilizes an exact transition to a dual set of variables. It therefore becomes possible to treat the irreducible vertices of an effective {it single-impurity} problem as small parameters. This provides a very efficient interpolation between band-like weak-coupling and atomic limits. The method is illustrated on the two-dimensional Hubbard model. The antiferromagnetic pseudogap, Fermi-arc formations, and non-Fermi-liquid effects due to the van Hove singularity are correctly reproduced by the lowest-order diagrams. Extremum properties of the dual fermion approach are discussed in terms of the Feynman variational principle.
We apply the recently developed dual fermion algorithm for disordered interacting systems to the Anderson-Hubbard model. This algorithm is compared with dynamical cluster approximation calculations for a one-dimensional system to establish the qualit
As a measure to ascertain whether a system is metallic or insulating, localization length $lambda_N$, which represents the spread of electron distribution, can be a useful quantity, especially for approaching a metal-insulator transition from the ins
One of the distinctive features of hole-doped cuprate superconductors is the onset of a `pseudogap below a temperature $T^*$. Recent experiments suggest that there may be a connection between the existence of the pseudogap and the topology of the Fer
We report large scale determinant Quantum Monte Carlo calculations of the effective bandwidth, momentum distribution, and magnetic correlations of the square lattice fermion Hubbard Hamiltonian at half-filling. The sharp Fermi surface of the non-inte
The repulsive Fermi Hubbard model on the square lattice has a rich phase diagram near half-filling (corresponding to the particle density per lattice site $n=1$): for $n=1$ the ground state is an antiferromagnetic insulator, at $0.6 < n lesssim 0.8$,