ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent manipulation of magnetization precession in ferromagnetic semiconductor (Ga,Mn)As with successive optical pumping

131   0   0.0 ( 0 )
 نشر من قبل Yusuke Hashimoto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report dynamic control of magnetization precession by light alone. A ferromagnetic (Ga,Mn)As epilayer was used for experiments. Amplitude of precession was modulated to a large extent by tuning the time interval between two successive optical pump pulses which induced torques on magnetization through a non-thermal process. Nonlinear effect in precession motion was also discussed.



قيم البحث

اقرأ أيضاً

We report single-color, time resolved magneto-optical measurements in ferromagnetic semiconductor (Ga,Mn)As. We demonstrate coherent optical control of the magnetization precession by applying two successive ultrashort laser pulses. The magnetic fiel d and temperature dependent experiments reveal the collective Mn-moment nature of the oscillatory part of the time-dependent Kerr rotation, as well as contributions to the magneto-optical signal that are not connected with the magnetization dynamics.
Non-thermal laser induced spin excitations, recently discovered in conventional oxide and metal ferromagnets, open unprecedented opportunities for research and applications of ultrafast optical manipulation of magnetic systems. Ferromagnetic semicond uctors, and (Ga,Mn)As in particular, should represent ideal systems for exploring this new field. Remarkably, the presence of non-thermal effects has remained one of the outstanding unresolved problems in the research of ferromagnetic semiconductors to date. Here we demonstrate that coherent magnetization dynamics can be excited in (Ga,Mn)As non-thermally by a transfer of angular momentum from circularly polarized femtosecond laser pulses and by a combination of non-thermal and thermal effects due to a transfer of energy from laser pulses. The thermal effects can be completely suppressed in piezo-electrically controlled samples. Our work is based on pump-and-probe measurements in a large set of (Ga,Mn)As epilayers and on systematic analysis of circular and linear magneto-optical coefficients. We provide microscopic theoretical interpretation of the experimental results.
The laser-induced precession of magnetization in (Ga,Mn)As samples with different magnetic anisotropy was studied by the time-resolved magneto-optical method. We observed that the dependence of the precession amplitude on the external magnetic field depends strongly on the magnetic anisotropy of (Ga,Mn)As and we explain this phenomenon in terms of competing cubic and uniaxial anisotropies. We also show that the corresponding anisotropy fields can be deduced from the magnetic field dependence of the precession frequency.
We show that the magnetization of a thin ferromagnetic (Ga,Mn)As layer can be modulated by picosecond acoustic pulses. In this approach a picosecond strain pulse injected into the structure induces a tilt of the magnetization vector M, followed by th e precession of M around its equilibrium orientation. This effect can be understood in terms of changes in magneto-crystalline anisotropy induced by the pulse. A model where only one anisotropy constant is affected by the strain pulse provides a good description of the observed time-dependent response.
Electrical current manipulation of magnetization switching through spin-orbital coupling in ferromagnetic semiconductor (Ga,Mn)As Hall bar devices has been investigated. The efficiency of the current-controlled magnetization switching is found to be sensitive to the orientation of the current with respect to the crystalline axes. The dependence of the spin-orbit effective magnetic field on the direction and magnitude of the current is determined from the shifts in the magnetization switching angle. We find that the strain induced effective magnetic field is about three times as large as the Rashba induced magnetic field in our GaMnAs devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا