ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancement of tunneling density of states at a junction of three Luttinger liquid wires

126   0   0.0 ( 0 )
 نشر من قبل Diptiman Sen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the tunneling density of states (TDOS) for a junction of three Tomonaga-Luttinger liquid wires. We show that there are fixed points which allow for the enhancement of the TDOS, which is unusual for Luttinger liquids. The distance from the junction over which this enhancement occurs is of the order of x = v/(2 omega), where v is the plasmon velocity and omega is the bias frequency. Beyond this distance, the TDOS crosses over to the standard bulk value independent of the fixed point describing the junction. This finite range of distances opens up the possibility of experimentally probing the enhancement in each wire individually.



قيم البحث

اقرأ أيضاً

We have measured the low temperature conductance of a one-dimensional island embedded in a single mode quantum wire. The quantum wire is fabricated using the cleaved edge overgrowth technique and the tunneling is through a single state of the island. Our results show that while the resonance line shape fits the derivative of the Fermi function the intrinsic line width decreases in a power law fashion as the temperature is reduced. This behavior agrees quantitatively with Furusakis model for resonant tunneling in a Luttinger-liquid.
94 - H.A. Fertig , Luis Brey 2006
We demonstrate that an undoped two-dimensional carbon plane (graphene) whose bulk is in the integer quantum Hall regime supports a non-chiral Luttinger liquid at an armchair edge. This behavior arises due to the unusual dispersion of the non-interact ing edges states, causing a crossing of bands with different valley and spin indices at the edge. We demonstrate that this stabilizes a domain wall structure with a spontaneously ordered phase degree of freedom. This coherent domain wall supports gapless charged excitations, and has a power law tunneling $I-V$ with a non-integral exponent. In proximity to a bulk lead, the edge may undergo a quantum phase transition between the Luttinger liquid phase and a metallic state when the edge confinement is sufficiently strong relative to the interaction energy scale.
We calculate the conductances of a three-way junction of spinless Luttinger-liquid wires as functions of bias voltages applied to three independent Fermi-liquid reservoirs. In particular, we consider the setup that is characteristic of a tunneling ex periment, in which the strength of electron-electron interactions in one of the arms of the junction (tunneling tip) is different from that in the other two arms (which together form a main wire). The scaling dependence of the two independent conductances on bias voltages is determined within a fermionic renormalization-group approach in the limit of weak interactions. The solution shows that, in general, the conductances scale with the bias voltages in an essentially different way compared to their scaling with the temperature $T$. Specifically, unlike in the two-terminal setup, the nonlinear conductances cannot be generically obtained from the linear ones by simply replacing $T$ with the corresponding bias voltage or the largest one. Remarkably, a finite tunneling bias voltage prevents the interaction-induced breakup of the main wire into two disconnected pieces in the limit of zero $T$ and a zero source-drain voltage.
150 - D.N. Aristov , P. Wolfle 2013
We calculate the conductances of a three-terminal junction set-up of spinless Luttinger liquid wires threaded by a magnetic flux, allowing for different interaction strength g_3 != g in the third wire. We employ the fermionic representation in the sc attering state picture, allowing for a direct calculation of the linear response conductances, without the need of introducing contact resistances at the connection points to the outer ideal leads. The matrix of conductances is parametrized by three variables. For these we derive coupled renormalization group (RG) equations, by summing up infinite classes of contributions in perturbation theory. The resulting general structure of the RG equations may be employed to describe junctions with an arbitrary number of wires and arbitrary interaction strength in each wire. The fixed point structure of these equations (for the chiral Y-junction) is analyzed in detail. For repulsive interaction (g,g_3>0) there is only one stable fixed point, corresponding to the complete separation of the wires. For attractive interaction (g<0 and/or g_3<0) four fixed points are found, the stability of which depends on the interaction strength. We confirm our previous weak-coupling result of lines of fixed points for special values of the interaction parameters reaching into the strong coupling domain. We find new fixed points not discussed before, even at the symmetric line g=g_3, at variance with the results of Oshikawa et al. The pair tunneling phenomenon conjectured by the latter authors is not found by us.
We report Coulomb drag measurements between vertically-integrated quantum wires separated by a barrier only 15 nm wide. The temperature dependence of the drag resistance is measured in the true one-dimensional (1D) regime where both wires have less t han one 1D subband occupied. As a function of temperature, an upturn in the drag resistance is observed in three distinct devices at a temperature $T^* sim 1.6$ K. This crossover in Coulomb drag behaviour is consistent with Tomonaga-Luttinger liquid models for the 1D-1D drag between quantum wires.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا