ترغب بنشر مسار تعليمي؟ اضغط هنا

Language structure in the n-object naming game

246   0   0.0 ( 0 )
 نشر من قبل Adam Lipowski
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine a naming game with two agents trying to establish a common vocabulary for n objects. Such efforts lead to the emergence of language that allows for an efficient communication and exhibits some degree of homonymy and synonymy. Although homonymy reduces the communication efficiency, it seems to be a dynamical trap that persists for a long, and perhaps indefinite, time. On the other hand, synonymy does not reduce the efficiency of communication, but appears to be only a transient feature of the language. Thus, in our model the role of synonymy decreases and in the long-time limit it becomes negligible. A similar rareness of synonymy is observed in present natural languages. The role of noise, that distorts the communicated words, is also examined. Although, in general, the noise reduces the communication efficiency, it also regroups the words so that they are more evenly distributed within the available verbal space.



قيم البحث

اقرأ أيضاً

In recent times, the research field of language dynamics has focused on the investigation of language evolution, dividing the work in three evolutive steps, according to the level of complexity: lexicon, categories and grammar. The Naming Game is a s imple model capable of accounting for the emergence of a lexicon, intended as the set of words through which objects are named. We introduce a stochastic modification of the Naming Game model with the aim of characterizing the emergence of a new language as the result of the interaction of agents. We fix the initial phase by splitting the population in two sets speaking either language A or B. Whenever the result of the interaction of two individuals results in an agent able to speak both A and B, we introduce a finite probability that this state turns into a new idiom C, so to mimic a sort of hybridization process. We study the system in the space of parameters defining the interaction, and show that the proposed model displays a rich variety of behaviours, despite the simple mean field topology of interactions.
Computational modelling with multi-agent systems is becoming an important technique of studying language evolution. We present a brief introduction into this rapidly developing field, as well as our own contributions that include an analysis of the e volutionary naming-game model. In this model communicating agents, that try to establish a common vocabulary, are equipped with an evolutionarily selected learning ability. Such a coupling of biological and linguistic ingredients results in an abrupt transition: upon a small change of the model control parameter a poorly communicating group of linguistically unskilled agents transforms into almost perfectly communicating group with large learning abilities. Genetic imprinting of the learning abilities proceeds via Baldwin effect: initially unskilled communicating agents learn a language and that creates a niche in which there is an evolutionary pressure for the increase of learning ability. Under the assumption that communication intensity increases continuously with finite speed, the transition is split into several transition-like changes. It shows that the speed of cultural changes, that sets an additional characteristic timescale, might be yet another factor affecting the evolution of language. In our opinion, this model shows that linguistic and biological processes have a strong influence on each other and this effect certainly has contributed to an explosive development of our species.
116 - Eric Foxall 2017
We consider a model of language development, known as the naming game, in which agents invent, share and then select descriptive words for a single object, in such a way as to promote local consensus. When formulated on a finite and connected graph, a global consensus eventually emerges in which all agents use a common unique word. Previous numerical studies of the model on the complete graph with $n$ agents suggest that when no words initially exist, the time to consensus is of order $n^{1/2}$, assuming each agent speaks at a constant rate. We show rigorously that the time to consensus is at least $n^{1/2-o(1)}$, and that it is at most constant times $log n$ when only two words remain. In order to do so we develop sample path estimates for quasi-left continuous semimartingales with bounded jumps.
In this paper, we study the role of degree mixing in the naming game. It is found that consensus can be accelerated on disassortative networks. We provide a qualitative explanation of this phenomenon based on clusters statistics. Compared with assort ative mixing, disassortative mixing can promote the merging of different clusters, thus resulting in a shorter convergence time. Other quantities, including the evolutions of the success rate, the number of total words and the number of different words, are also studied.
In the naming game, individuals or agents exchange pairwise local information in order to communicate about objects in their common environment. The goal of the game is to reach a consensus about naming these objects. Originally used to investigate l anguage formation and self-organizing vocabularies, we extend the classical naming game with a globally shared memory accessible by all agents. This shared memory can be interpreted as an external source of knowledge like a book or an Internet site. The extended naming game models an environment similar to one that can be found in the context of social bookmarking and collaborative tagging sites where users tag sites using appropriate labels, but also mimics an important aspect in the field of human-based image labeling. Although the extended naming game is non-deterministic in its word selection, we show that consensus towards a common vocabulary is reached. More importantly, we show the qualitative and quantitative influence of the external source of information, i.e. the shared memory, on the consensus dynamics between the agents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا