ﻻ يوجد ملخص باللغة العربية
We report a systematic study of the superconducting (SC) and normal-state anisotropy of Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ single crystals with controlled amounts of excess Fe ($y$ = 0, 0.07, and 0.14). The SC state anisotropy $gamma_{H}$ was obtained by measuring the upper critical fields under high magnetic fields over 50 T for both $Hparallel ab$ and $Hparallel c$. On the other hand, the normal state anisotropy $gamma_{rho}$ was obtained by measuring the resistivity with current flowing in the $ab$ plane ($rho_{ab}$) and along the $c$ axis ($rho_c$). To precisely measure $rho_{ab}$ and $rho_c$ in the same part of a specimen avoiding the variation dependent on pieces or parts, we adopt a new method using a micro-fabricated bridge with an additional neck part along $c$ axis. The $gamma_{H}$ decreases from a value dependent on the amount of excess Fe at $T_{rm{c}}$ to a common value $sim$ 1 at 2 K. The different $gamma_{H}$ at $T_{rm{c}}$ ($sim$1.5 for $y$ = 0, and 2.5 for $y$ = 0.14) suggests that the anisotropy of effective mass $m_c^*/m_{ab}^*$ increases from $sim$ 2.25 ($y$ = 0) to 6.25 ($y$ = 0.14) with the excess Fe. The almost isotropic $gamma_{H}$ at low temperatures is due to the strong spin paramagnetic effect at $Hparallel ab$. By contrast, the $gamma_{rho}$ shows a much larger value of $sim$ 17 ($y$ = 0) to $sim$ 50 ($y$ = 0.14) at the temperature just above $T_{rm{c}}$. Combined the results of $gamma_{H}$ and $gamma_{rho}$ near $T_{rm{c}}$, we found out that the discrepant anisotropies between the SC and normal states originates from a large anisotropy of scattering time $tau_{ab}$/$tau_c$ $sim$ 7.8. The $tau_{ab}$/$tau_c$ is found to be independent of the excess Fe.
We study Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ multi-band superconductor with $T_c=14$K by polarization-resolved Raman spectroscopy. Deep in the superconducting state, we detect pair-breaking excitation at 45cm$^{-1}$ ($2Delta=5.6$meV) in the $XY$($B_{2g}$)
It has been clarified that bulk superconductivity in Fe$_{1+y}$Te$_{0.6}$Se$_{0.4}$ can be induced by annealing in an appropriate atmosphere to remove the harmful effects of excess iron. In order to clarify the details of the annealing process, we st
Iron chalcogenide Fe(Te,Se) attracted much attention due to its simple structure, which is favorable for probing the superconducting mechanism. Its less toxic nature compared with iron arsenides is also advantageous for applications of iron-based sup
Single crystals of Fe(1+x)Te(1-y)Se(y) have been grown with a controlled Fe excess and Se doping, and the crystal structure has been refined for various compositions. The systematic investigation of magnetic and superconducting properties as a functi
We compare the superconducting phase-diagram under high magnetic fields (up to $H = 45$ T) of Fe$_{1+y}$Se$_{0.4}$Te$_{0.6}$ single crystals originally grown by the Bridgman-Stockbarger (BRST) technique, which were annealed to display narrow supercon