ترغب بنشر مسار تعليمي؟ اضغط هنا

Nature of Ar bonding to small Co_n^+ clusters and its effect on the structure determination by far-infrared absorption spectroscopy

191   0   0.0 ( 0 )
 نشر من قبل Patrick Rinke
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Far-infrared vibrational spectroscopy by multiple photon dissociation has proven to be a very useful technique for the structural fingerprinting of small metal clusters. Contrary to previous studies on cationic V, Nb and Ta clusters, measured vibrational spectra of small cationic cobalt clusters show a strong dependence on the number of adsorbed Ar probe atoms, which increases with decreasing cluster size. Focusing on the series Co_4^+ to Co_8^+ we therefore use density-functional theory to analyze the nature of the Ar-Co_n^+ bond and its role for the vibrational spectra. In a first step, energetically low-lying isomer structures are identified through first-principles basin-hopping sampling runs and their vibrational spectra computed for a varying number of adsorbed Ar atoms. A comparison of these fingerprints with the experimental data enables in some cases a unique assignment of the cluster structure. Independent of the specific low-lying isomer, we obtain a pronounced increase of the Ar binding energy for the smallest cluster sizes, which correlates nicely with the observed increased influence of the Ar probe atoms on the IR spectra. Further analysis of the electronic structure motivates a simple electrostatic picture that not only explains this binding energy trend, but also why the influence of the rare-gas atom is much stronger than in the previously studied systems.



قيم البحث

اقرأ أيضاً

The electronic structure of the nanolaminated transition metal carbide Ti2AlC has been investigated by bulk-sensitive soft x-ray emission spectroscopy. The measured Ti L, C K and Al L emission spectra are compared with calculated spectra using ab ini tio density-functional theory including dipole matrix elements. The detailed investigation of the electronic structure and chemical bonding provides increased understanding of the physical properties of this type of nanolaminates. Three different types of bond regions are identified; the relatively weak Ti 3d - Al 3p hybridization 1 eV below the Fermi level, and the Ti 3d - C 2p and Ti 3d - C 2s hybridizations which are stronger and deeper in energy are observed around 2.5 eV and 10 eV below the Fermi level, respectively. A strongly modified spectral shape of the 3s final states in comparison to pure Al is detected for the buried Al monolayers indirectly reflecting the Ti 3d - Al 3p hybridization. The differences between the electronic and crystal structures of Ti2AlC, Ti3AlC2 and TiC are discussed in relation to the number of Al layers per Ti layer in the two former systems and the corresponding change of the unusual materials properties.
154 - E.Nishibori , M.Takata , M.Sakata 2001
The accurate charge density of MgB2 was observed at room temperature(R.T.) and 15K by the MEM(Maximum Entropy Method)/Rietveld analysis using synchrotron radiation powder data. The obtained charge density clearly revealed the covalent bonding feature of boron forming the 2D honeycomb network in the basal plane, on the other hand, Mg is found to be in divalent state. A subtle but clear charge concentration was found on boron 2D sheets at 15K, which should be relating to superconductivity.
We combine infrared reflectivity and EXAFS (Extended X-ray Absorption Fine Structure) techniques to study the solid solution La0.67Ca0.33MnO3 prepared by different methods yielding samples with different insulator-metal transition temperatures (TIM). While the small polaron analysis of the optical conductivity provides a natural description for the higher frequency reflectivity tail of conducting samples, our structural results are in accord with two non-equivalent sites in the insulating phase of good-quality samples. Those sites, one for the Mn3+ Jahn-Teller distorted octahedra and another for the Mn4+ ion, gradually turn into one dynamically averaged below the transition TIM. On the other hand, carriers screening antiresonances near infrared longitudinal optical modes, above TIM, mirror thermal activated small polarons weakly smearing EXAFS oscillations. We associate this to the lack of M3+,M4+ explicit structure in the Mn K-edge absorption band. Extra octahedra, detected by EXAFS below TIM in higher resistivity samples, seem to be excluded of participating in the dynamics of the insulator-metal transition shifting TIM toward lower temperatures.
The electronic structure in the new transition metal carbide Ti4SiC3 has been investigated by bulk-sensitive soft x-ray emission spectroscopy and compared to the well-studied Ti3SiC2 and TiC systems. The measured high-resolution Ti L, C K and Si L x- ray emission spectra are discussed with ab initio calculations based on density-functional theory including core-to-valence dipole matrix elements. The detailed investigations of the Ti-C and Ti-Si chemical bonds provide increased understanding of the physical properties of these nanolaminates. A strongly modified spectral shape is detected for the buried Si monolayers due to Si 3p hybridization with the Ti 3d orbitals. As a result of relaxation of the crystal structure and the charge-transfer from Ti (and Si) to C, the strength of the Ti-C covalent bond is increased. The differences between the electronic and crystal structures of Ti4SiC3 and Ti3SiC2 are discussed in relation to the number of Si layers per Ti layer in the two systems and the corresponding change of materials properties.
40 - K. Kamaras 2001
Infrared spectra of a K4C60 single-phase thin film have been measured between room temperature and 20 K. At low temperatures, the two high-frequency T1u modes appear as triplets, indicating a static D2h crystal-field stabilized Jahn-Teller distortion of the (C60)4- anions. The T1u(4) mode changes into the known doublet above 250 K, a pattern which could have three origins: a dynamic Jahn-Teller effect, static disorder between staggered anions, or a phase transition from an orientationally-ordered phase to one where molecular motion is significant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا