ﻻ يوجد ملخص باللغة العربية
We derive variational equations to analyze the stability of synchronization for coupled near-identical oscillators. To study the effect of parameter mismatch on the stability in a general fashion, we define master stability equations and associated master stability functions, which are independent of the network structure. In particular, we present several examples of coupled near-identical Lorenz systems configured in small networks (a ring graph and sequence networks) with a fixed parameter mismatch and a large Barabasi-Albert scale-free network with random parameter mismatch. We find that several different network architectures permit similar results despite various mismatch patterns.
We derive a master stability function (MSF) for synchronization in networks of coupled dynamical systems with small but arbitrary parametric variations. Analogous to the MSF for identical systems, our generalized MSF simultaneously solves the linear
In this article we synchronize by active control method all 19 identical Sprott systems provided in paper [10]. Particularly, we find the corresponding active controllers as well as we perform (as an example) the numerical synchronization of two Sprott-A models.
This paper deals with two types of synchronous behavior of chaotic oscillators -- generalized synchronization and noise--induced synchronization. It has been shown that both these types of synchronization are caused by similar mechanisms and should b
We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. We focus on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone. Comparing the synchronization properties of static a
This paper used multi-scale method and KBM method to get approximate solution of coupled Van der Pol oscillators, based on which, researchers investigated the impact several parameters have on the prerequisite of synchronization and the time it takes