ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical and experimental studies of resonators with reduced resonant frequencies and small electrical sizes

112   0   0.0 ( 0 )
 نشر من قبل Tong Hao
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Methods on reducing resonant frequencies and electrical sizes of resonators are reported in this paper. Theoreti-cal and numerical analysis has been used and the results for the broadside-coupled resonators from both studies exhibit good agreement. Initial fabrication techniques are proposed and measurement results are compared with simulations. Further high resolution techniques have been envisaged to enhance the performance of the resona-tors. This class of small resonators with low resonant frequencies indicates a variety of applications in the design of microwave devices.


قيم البحث

اقرأ أيضاً

We use a numerical electromagnetic simulation software to investigate a filtering device consisting of a small dimensional microstrips embedded with a thin layer of ferromagnetic material and we compare our results to experimental results. We are abl e to show good correlation of simulation versus experiment for the magnitude of insertion loss and phase shift. The microstrips considered have dimensions on the order of the skin depth of the conductor and hence the field distribution is not easily calculated by analytic methods. We show that numerical simulation methods provide an accurate means of characterizing these structures.
Aluminum nitride has been shown to possess both strong Kerr nonlinearity and electro-optic Pockels effect. By combining these two effects, here we demonstrate on-chip reversible on/off switching of the optical frequency comb generated by an aluminum nitride microring resonator. We optimize the design of gating electrodes and the underneath resonator structure to effectively apply electric field without increasing the optical loss. The switching of the comb is monitored by measuring one of the frequency comb peaks while varying the electric field. The controlled comb electro-optic response is investigated for direct comparison with the transient thermal effect.
Co-based nanostructures ranging from core-shell to hollow nanoparticles were produced by varying the reaction time and the chemical environment during the thermal decomposition of Co2(CO)8. Both structural characterization and kinetic model simulatio n illustrate that the diffusivities of Co and oxygen determine the growth ratio and the final morphology of the nanoparticles. Exchange coupling between Co and Co-oxide in core/shell nanoparticles induced a shift of field-cooled hysteresis loops that is proportional to the shell thickness, as verified by numerical studies. The increased nanocomplexity when going from core/shell to hollow particles, also leads to the appearance of hysteresis above 300 K due to an enhancement of the surface anisotropy resulting from the additional spin-disordered surfaces.
Directive optical leaky wave antennas (OLWAs) with tunable radiation pattern are promising integrated optical modulation and scanning devices. OLWAs fabricated using CMOS-compatible semiconductor planar waveguide technology have the potential of prov iding high directivity with electrical tunability for modulation and switching capabilities. We experimentally demonstrate directive radiation from a silicon nitride ($Si_3N_4$) waveguide-based OLWA. The OLWA design comprises 50 crystalline Si perturbations buried inside the waveguide, with a period of 1 {mu}m, each with a length of 260 nm and a height of 150 nm, leading to a directive radiation pattern at telecom wavelengths. The measured far-field radiation pattern at the wavelength of 1540 nm is very directive, with the maximum intensity at the angle of 84.4{deg} relative to the waveguide axis and a half-power beam width around 6.2{deg}, which is consistent with our theoretical predictions. The use of semiconductor perturbations facilitates electronic radiation control thanks to the refractive index variation induced by a carrier density change in the perturbations. To assess the electrical modulation capability, we study carrier injection and depletion in Si perturbations, and investigate the Franz-Keldysh effect in germanium as an alternative way. We theoretically show that the silicon wire modulator has a -3 dB modulation bandwidth of 75 GHz with refractive index change of $3times10^{-4}$ in depletion mode, and 350 MHz bandwidth with refractive index change of $1.5times10^{-2}$ in injection mode. The Franz-Keldysh effect has the potential to generate very fast modulation in radiation control at telecom wavelengths.
Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other w aves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا