ﻻ يوجد ملخص باللغة العربية
A class of multidimensional integrable hierarchies connected with commutation of general (unreduced) (N+1)-dimensional vector fields containing derivative over spectral variable is considered. They are represented in the form of generating equation, as well as in the Lax-Sato form. A dressing scheme based on nonlinear vector Riemann problem is presented for this class. The hierarchies connected with Manakov-Santini equation and Dunajski system are considered as illustrative examples.
We compare the results of our two papers with the results of the paper Aratyn H., Gomes J.F., Zimerman A.H., Higher order Painleve equations and their symmetries via reductions of a class of integrable models, J. Phys. A: Math. Theor., V. 44} (2011), Art. No. 235202.
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approach
We introduce two classes of homogeneous polynomials and show their role in constructing of integrable hierarchies for some integrable lattices.
Based on the notion of Darboux-KP chain hierarchy and its invariant submanifolds we construct some class of constraints compatible with integrable lattices. Some simple examples are given.
In this paper we investigate integrable models from the perspective of information theory, exhibiting various connections. We begin by showing that compressible hydrodynamics for a one-dimesional isentropic fluid, with an appropriately motivated info