ترغب بنشر مسار تعليمي؟ اضغط هنا

On a class of multidimensional integrable hierarchies and their reductions

116   0   0.0 ( 0 )
 نشر من قبل L. V. Bogdanov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L.V. Bogdanov




اسأل ChatGPT حول البحث

A class of multidimensional integrable hierarchies connected with commutation of general (unreduced) (N+1)-dimensional vector fields containing derivative over spectral variable is considered. They are represented in the form of generating equation, as well as in the Lax-Sato form. A dressing scheme based on nonlinear vector Riemann problem is presented for this class. The hierarchies connected with Manakov-Santini equation and Dunajski system are considered as illustrative examples.



قيم البحث

اقرأ أيضاً

149 - Andrei K Svinin 2014
We compare the results of our two papers with the results of the paper Aratyn H., Gomes J.F., Zimerman A.H., Higher order Painleve equations and their symmetries via reductions of a class of integrable models, J. Phys. A: Math. Theor., V. 44} (2011), Art. No. 235202.
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approach es. After recalling the derivation of Lowner equations based on complex analysis we review one- and multi-variable reductions of dispersionless integrable hierarhies (dKP, dBKP, dToda, and dDKP). The one-vaiable reductions are described by solutions of differe
228 - Andrei K. Svinin 2013
Based on the notion of Darboux-KP chain hierarchy and its invariant submanifolds we construct some class of constraints compatible with integrable lattices. Some simple examples are given.
In this paper we investigate integrable models from the perspective of information theory, exhibiting various connections. We begin by showing that compressible hydrodynamics for a one-dimesional isentropic fluid, with an appropriately motivated info rmation theoretic extension, is described by a general nonlinear Schrodinger (NLS) equation. Depending on the choice of the enthalpy function, one obtains the cubic NLS or other modified NLS equations that have applications in various fields. Next, by considering the integrable hierarchy associated with the NLS model, we propose higher order information measures which include the Fisher measure as their first member. The lowest members of the hiearchy are shown to be included in the expansion of a regularized Kullback-Leibler measure while, on the other hand, a suitable combination of the NLS hierarchy leads to a Wootters type measure related to a NLS equation with a relativistic dispersion relation. Finally, through our approach, we are led to construct an integrable semi-relativistic NLS equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا