ﻻ يوجد ملخص باللغة العربية
In this paper we investigate integrable models from the perspective of information theory, exhibiting various connections. We begin by showing that compressible hydrodynamics for a one-dimesional isentropic fluid, with an appropriately motivated information theoretic extension, is described by a general nonlinear Schrodinger (NLS) equation. Depending on the choice of the enthalpy function, one obtains the cubic NLS or other modified NLS equations that have applications in various fields. Next, by considering the integrable hierarchy associated with the NLS model, we propose higher order information measures which include the Fisher measure as their first member. The lowest members of the hiearchy are shown to be included in the expansion of a regularized Kullback-Leibler measure while, on the other hand, a suitable combination of the NLS hierarchy leads to a Wootters type measure related to a NLS equation with a relativistic dispersion relation. Finally, through our approach, we are led to construct an integrable semi-relativistic NLS equation.
In this paper, we study explicit correspondences between the integrable Novikov and Sawada-Kotera hierarchies, and between the Degasperis-Procesi and Kaup-Kupershmidt hierarchies. We show how a pair of Liouville transformations between the isospectra
Paraconformal or $GL(2)$ geometry on an $n$-dimensional manifold $M$ is defined by a field of rational normal curves of degree $n-1$ in the projectivised cotangent bundle $mathbb{P} T^*M$. Such geometry is known to arise on solution spaces of ODEs wi
In this paper, we establish Liouville correspondences for the integrable two-component Camassa-Holm hierarchy, the two-component Novikov (Geng-Xue) hierarchy, and the two-component dual dispersive water wave hierarchy by means of the related Liouvill
A class of multidimensional integrable hierarchies connected with commutation of general (unreduced) (N+1)-dimensional vector fields containing derivative over spectral variable is considered. They are represented in the form of generating equation,
In the present article we show that the Skyrme--Faddeev model possesses nonlinear wave solutions, which can be expressed in terms of elliptic functions. The Whitham averaging method has been exploited in order to describe slow deformation of periodic