ﻻ يوجد ملخص باللغة العربية
A common paradigm for scientific computing is distributed message-passing systems, and a common approach to these systems is to implement them across clusters of high-performance workstations. As multi-core architectures become increasingly mainstream, these clusters are very likely to include multi-core machines. However, the theoretical models which are currently used to develop communication algorithms across these systems do not take into account the unique properties of processes running on shared-memory architectures, including shared external network connections and communication via shared memory locations. Because of this, existing algorithms are far from optimal for modern clusters. Additionally, recent attempts to adapt these algorithms to multicore systems have proceeded without the introduction of a more accurate formal model and have generally neglected to capitalize on the full power these systems offer. We propose a new model which simply and effectively captures the strengths of multi-core machines in collective communications patterns and suggest how it could be used to properly optimize these patterns.
In virtualized data centers, consolidation of Virtual Machines (VMs) on minimizing the number of total physical machines (PMs) has been recognized as a very efficient approach. This paper considers the energy-efficient consolidation of VMs in a Cloud
This work presents a heterogeneous communication library for clusters of processors and FPGAs. This library, Shoal, supports the Partitioned Global Address Space (PGAS) memory model for applications. PGAS is a shared memory model for clusters that cr
Analyzing massive complex networks yields promising insights about our everyday lives. Building scalable algorithms to do so is a challenging task that requires a careful analysis and an extensive evaluation. However, engineering such algorithms is o
We reduce the cost of communication and synchronization in graph processing by analyzing the fastest way to process graphs: pushing the updates to a shared state or pulling the updates to a private state.We investigate the applicability of this push-