ترغب بنشر مسار تعليمي؟ اضغط هنا

Ionization Quenching Factor Measurement of Helium 4

44   0   0.0 ( 0 )
 نشر من قبل Frederic Mayet
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Santos




اسأل ChatGPT حول البحث

The ionization quenching factor (IQF) is defined as the fraction of energy released by a recoil in a medium through ionization compared with its total kinetic energy. At low energies, in the range of a few keV, the ionization produced in a medium falls rapidly and systematic measurements are needed. We report measurements carried out at such low energies as a function of the pressure in He4 at 350, 700, 1000 and 1300 mbar. In order to produce a nucleus moving with a controlled energy in the detection volume, we have developed an Electron Cyclotron Resonance Ion Source (ECRIS) coupled to an ionization chamber by a differential pumping. The quenching factor of He4 has been measured for the first time down to 1 keV recoil energies. An important deviation with respect to the phenomenological calculations has been found allowing an estimation of the scintillation produced in He4 as a function of pressure. The variation of the IQF as a function of the percentage of isobutane, used as quencher, is also presented.

قيم البحث

اقرأ أيضاً

72 - H.W.Joo , H.S.Park , J.H.Kim 2018
Scintillation crystals are commonly used for direct detection of weakly interacting massive particles (WIMPs), which are suitable candidates for a particle dark matter. It is well known that the scintillation light yields are different for electron r ecoil and nuclear recoil. To calibrate the energies of WIMP-induced nuclear recoil signals, the quenching factor (QF) needs to be measured, which is the light yield ratio of the nuclear recoil to electron recoil. Measurements of the QFs for Na and I recoils in a small (2 cm x 2 cm x 1.5 cm) NaI(Tl) crystal are performed with 2.43-MeV mono-energetic neutrons generated by deuteron-deuteron fusion. Depending on the scattering angle of the neutrons, the energies of the recoiled ions vary in the range of 9 - 152 keV for Na and 19 - 75 keV for I. The QFs of Na are measured at 9 points with values in the range of 10 - 23 % while those of I are measured at 4 points with values in the range of 4 - 6 %.
We study resonant two-color two-photon ionization of Helium via the 1s3p 1P1 state. The first color is the 15th harmonic of a tunable titanium sapphire laser, while the second color is the fundamental laser radiation. Our method uses phase-locked hig h-order harmonics to determine the {it phase} of the two-photon process by interferometry. The measurement of the two-photon ionization phase variation as a function of detuning from the resonance and intensity of the dressing field allows us to determine the intensity dependence of the transition energy.
Recently an improved quenching factor (QF) measurement for low-energy nuclear recoils in CsI[Na] has been reported by the COHERENT Collaboration. The new energy-dependent QF is characterized by a reduced systematic uncertainty and leads to a better a greement between the experimental COHERENT data and the Standard Model (SM) expectation. In this work, we report updated constraints on parameters that describe the process of coherent elastic neutrino-nucleus scattering within and beyond the SM, and we also present how the new QF affects their interpretation.
Measurements of the quenching factor for sodium recoils in a 5 cm diameter NaI(Tl) crystal at room temperature have been made at a dedicated neutron facility at the University of Sheffield. The crystal has been exposed to 2.45 MeV mono-energetic neut rons generated by a Sodern GENIE 16 neutron generator, yielding nuclear recoils of energies between 10 and 100 keVnr. A cylindrical BC501A detector has been used to tag neutrons that scatter off sodium nuclei in the crystal. Cuts on pulse shape and time of flight have been performed on pulses recorded by an Acqiris DC265 digitiser with a 2 ns sampling time. Measured quenching factors of Na nuclei range from 19% to 26% in good agreement with other experiments, and a value of 25.2 pm 6.4% has been determined for 10 keV sodium recoils. From pulse shape analysis, the mean times of pulses from electron and nuclear recoils have been compared down to 2 keVee. The experimental results are compared to those predicted by Lindhard theory, simulated by the SRIM Monte Carlo code, and a preliminary curve calculated by Prof. Akira Hitachi.
A path integral Monte Carlo method based on the worm algorithm has been developed to compute the chemical potential of interacting bosonic quantum fluids. By applying it to finite-sized systems of helium-4 atoms, we have confirmed that the chemical p otential scales inversely with the number of particles to lowest order. The introduction of a simple scaling form allows for the extrapolation of the chemical potential to the thermodynamic limit, where we observe excellent agreement with known experimental results for helium-4 at saturated vapor pressure. We speculate on future applications of the proposed technique, including its use in studies of confined quantum fluids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا