ترغب بنشر مسار تعليمي؟ اضغط هنا

COHERENT constraints after the COHERENT-2020 quenching factor measurement

37   0   0.0 ( 0 )
 نشر من قبل Dimitrios K. Papoulias
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently an improved quenching factor (QF) measurement for low-energy nuclear recoils in CsI[Na] has been reported by the COHERENT Collaboration. The new energy-dependent QF is characterized by a reduced systematic uncertainty and leads to a better agreement between the experimental COHERENT data and the Standard Model (SM) expectation. In this work, we report updated constraints on parameters that describe the process of coherent elastic neutrino-nucleus scattering within and beyond the SM, and we also present how the new QF affects their interpretation.

قيم البحث

اقرأ أيضاً

Recent measurements of the germanium quenching factor deviate significantly from the predictions of the standard Lindhard model for nuclear recoil energies below a keV. This departure may be explained by the Migdal effect in neutron scattering on ger manium. We show that the Migdal effect on the quenching factor can mimic the signal of a light Z or light scalar mediator in coherent elastic neutrino nucleus scattering experiments with reactor antineutrinos. It is imperative that the quenching factor of nuclei with low recoil energy thresholds be precisely measured close to threshold to avoid such confusion. This will also help in experimental searches of light dark matter.
113 - Witold Skiba , Qing Xia 2020
We compute bounds on coefficients of effective operators in the Standard Model that can be inferred from observations of neutrino scattering by the COHERENT experiment. While many operators are bound extremely well by past experiments the full future data set from COHERENT will provide modest improvements for some operators.
We present new constraints on three different models, the so-called universal, $B-L$ and $L_mu-L_tau$ models, involving a yet to be observed light vector $Z$ mediator, by exploiting the recent observation of coherent elastic neutrino-nucleus scatteri ng (CE$ u$NS) in argon and cesium-iodide performed by the COHERENT Collaboration. We compare the results obtained from a combination of the above data sets with the limits derived from searches in fixed target, accelerator, solar neutrino and reactor CE$ u$NS experiments, and with the parameter region that could explain the anomalous magnetic moment of the muon. We show that for the universal and the $B-L$ models, the COHERENT data allow us to put stringent limits in the light vector mediator mass, $M_{Z}$, and coupling, $g_{Z}$, parameter space.
We investigate coherent-elastic neutrino-nucleus scattering ($CE u NS$) in 3-3-1 models for different values of $beta$ in which $beta$ is a parameter used to define the charge operator of the 331 models. We show that the number of events predicted by 331$beta$ model is in agreement with the data given by COHERENT experiment. We evaluate the sensitivity of the mass of Z boson with 90% confidence level (CL) and find that $m_{Z}geq 1.4 $TeV for $beta=-sqrt{3}$ with 90% CL. We perform $chi^2$ fit for liquid Argon, Germanium and NaI detector subsystems, we obtain $m_{Z} geq [2,3.1 ]$ TeV with 90% CL. Our results indicate low-energy high-intensity measurements can provide a valuable probe, complementary to high energy collider searches at LHC and electroweak precision measurements.
We explore the potential to prove light extra gauge $Z^prime$ boson inducing non-standard neutrino interactions (NSIs) in the coherent-elastic neutrino-nucleus scattering (CE$ u $NS) experiments. We intend to examine how the latest COHERENT-CsI and CENNS-10 data can constrain this model. A detailed investigation for the upcoming Ge, LAr-1t, and NaI detectors of COHERENT collaboration has also been made. Depending on numerous other constraints coming from oscillation experiments, muon $ (g-2) $, beam-dump experiments, LHCb, and reactor experiment CONUS, we explore the parameter space in $Z^prime$ boson mass vs coupling constant plane. Moreover, we study the predictions of two-zero textures that are allowed in the concerned model in light of the latest global-fit data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا