ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis and characterization of multiferroic BiMn$_7$O$_{12}$

44   0   0.0 ( 0 )
 نشر من قبل Francesco Mezzadri
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the high pressure synthesis of BiMn$_7$O$_{12}$, a manganite displaying a quadruple perovskite structure. Structural characterization of single crystal samples shows a distorted and asymmetrical coordination around the Bi atom, due to presence of the $6s^{2}$ lone pair, resulting in non-centrosymmetric space group Im, leading to a permanent electrical dipole moment and ferroelectric properties. On the other hand, magnetic characterization reveals antiferromagnetic transitions, in agreement with the isostructural compounds, thus evidencing two intrinsic properties that make BiMn$_7$O$_{12}$ a promising multiferroic material.

قيم البحث

اقرأ أيضاً

The layered compound KCu$_3$As$_2$O$_7$(OD)$_3$, comprising distorted kagome planes of $S=1/2$ Cu$^{2+}$ ions, is a recent addition to the family of type-II multiferroics. Previous zero field neutron diffraction work has found two helically ordered r egimes in kns, each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to $20$~T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the $H-T$ phase diagram. We find metamagnetic transitions in both low temperatures phases around $mu_0 H_c sim 3.7$~T, which neutron powder diffraction reveals to correspond to a rotation of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at $3.7$~T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion.
We report a neutron powder diffraction study of $R$Mn$_7$O$_{12}$ quadruple perovskite manganites with $R$ = La, Ce, Nd, Sm, and Eu. We show that in all measured compounds concomitant magnetic ordering of the $A$ and $B$ manganese sublattices occurs on cooling below the N$mathrm{acute{e}}$el temperature. The respective magnetic structures are collinear, with one uncompensated Mn$^{3+}$ moment per formula unit as observed in bulk magnetisation measurements. We show that both LaMn$_7$O$_{12}$ and NdMn$_7$O$_{12}$ undergo a second magnetic phase transition at low temperature, which introduces a canting of the $B$ site sublattice moments that is commensurate in LaMn$_7$O$_{12}$ and incommensurate in NdMn$_7$O$_{12}$. This spin canting is consistent with a magnetic instability originating in the $B$ site orbital order. Furthermore, NdMn$_7$O$_{12}$ displays a third magnetic phase transition at which long range ordering of the Nd sublattice modifies the periodicity of the incommensurate spin canting. Our results demonstrate a rich interplay between transition metal magnetism, orbital order, and the crystal lattice, which may be fine tuned by cation substitution and rare earth magnetism.
The quadruple perovskite CaMn$_7$O$_{12}$ is a topical multiferroic, in which the hierarchy of electronic correlations driving structural distortions, modulated magnetism, and orbital order is not well known and may vary with temperature. x-ray reson ant elastic scattering (XRES) provides a momentum-resolved tool to study these phenomena, even in very small single crystals, with valuable information encoded in its polarization- and energy-dependence. We present an application of this technique to CaMn$_7$O$_{12}$. By polarization analysis, it is possible to distinguish superstructure reflections associated with magnetic order and orbital order. Given the high momentum resolution, we resolve a previously unknown splitting of an orbital order superstructure peak, associated with a distinct textit{locked-in} phase at low temperatures. A second set of orbital order superstructure peaks can then be interpreted as a second-harmonic orbital signal. Surprisingly, the intensities of the first- and second-harmonic orbital signal show disparate temperature and polarization dependence. This orbital re-ordering may be driven by an exchange mechanism, that becomes dominant over the Jahn-Teller instability at low temperature.
We studied the novel multiferroic material Sr$_2$FeSi$_2$O$_7$, and found 3 absorption modes above the magnetic ordering transition temperature using time-domain terahertz spectroscopy. These absorption modes can be explained as the optical transitio ns between the spin-orbit coupling and crystal field split 3d$^6$ Fe$^{2+}$ ground state term in this material. Consideration of the compressed tetrahedral environment of the Fe$^{2+}$ site is crucial to understand the excitations. We point out, however, discrepancies between the single-site atomic picture and the experimental results.
We report on spherical neutron polarimetry and unpolarized neutron diffraction in zero magnetic field as well as flipping ratio and static magnetization measurements in high magnetic fields on the multiferroic square lattice antiferromagnet Ba$_2$CoG e$_2$O$_7$. We found that in zero magnetic field the magnetic space group is $Cmm2$ with sublattice magnetization parallel to the [100] axis of this orthorhombic setting. The spin canting has been found to be smaller than $0.2^circ$ in the ground state. This assignment is in agreement with the field-induced changes of the magnetic domain structure below 40 mT as resolved by spherical neutron polarimetry. The magnitude of the ordered moment has been precisely determined. Above the magnetic ordering temperature short-range magnetic fluctuations are observed. Based on the high-field magnetization data, we refined the parameters of the recently proposed microscopic spin model describing the multiferroic phase of Ba$_2$CoGe$_2$O$_7$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا