ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultracool Subdwarfs: The Halo Population Down to the Substellar Limit

139   0   0.0 ( 0 )
 نشر من قبل Adam J. Burgasser
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Adam J. Burgasser




اسأل ChatGPT حول البحث

Ultracool subdwarfs are low luminosity, late-type M and L dwarfs that exhibit spectroscopic indications of subsolar metallicity and halo kinematics. Their recent discovery and ongoing investigation have led to new insights into the role of metallicity in the opacity structure, chemistry (e.g. dust formation) and evolution of low-temperature atmospheres; the long-term evolution of magnetic activity and angular momentum amongst the lowest-mass stars; the form of the halo luminosity and mass functions down to the hydrogen-burning mass limit; and even fundamental issues such as spectral classification and absolute brightness scales. This Splinter Session was devoted to bringing advances in observational and theoretical ultracool subdwarf research to the attention of the low-mass stellar and brown dwarf communities, as well as to share results among ultracool subdwarf enthusiasts.


قيم البحث

اقرأ أيضاً

We report the discovery of three very late T dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS) Third Data Release: ULAS J101721.40+011817.9 (ULAS1017), ULAS J123828.51+095351.3 (ULAS1238) and ULAS J133553.45+113005.2 (ULAS1335).We detail optical and near-infrared photometry for all three sources, and mid-infrared photometry for ULAS1335. We use near-infrared spectra of each source to assign spectral types T8p (ULAS1017), T8.5 (ULAS1228) and T9 (ULAS1335) to these objects. We estimate that ULAS1017 has 750 < Teff < 850K, and 5.0 < log g < 5.5, assuming solar metallicity, an age of 1.6-15 Gyr, a mass of 33-70 MJ and lies at a distance of 31-54 pc. We extend the unified scheme of Burgasser et al. (2006) to the type T9 and suggest the inclusion of the WJ index to replace the now saturated J-band indices. ULAS1335 is the same spectral type as ULAS J003402.77-005206.7 and CFBDS J005910.90-011401.3. Comparison of model spectra with that of ULAS1335 suggest a temperature below 600K. We find ULAS1335 to be extremely red in near to mid-infrared colours, with H-[4.49]=4.34+/-0.04. This is the reddest near to mid-infrared colour yet observed for a T dwarf, which supports Teff < 600K, and we estimate Teff ~550-600K for ULAS1335. We estimate that ULAS1335 has an age of 0.6-5.3 Gyr, a mass of 15-31 MJ and lies at a distance of 8-12 pc.
VLT/FORS spectroscopy and 2MASS near-infrared photometry, together with previously known data, have been used to establish the membership and the properties of a sample of low-mass candidate members of the sigma Orionis cluster with masses spanning f rom 1 Msun down to about 0.013 Msun (i.e., deuterium-burning mass limit). We have observed K-band infrared excess and remarkably intense H(alpha) emission in various cluster members, which, in addition to the previously detected forbidden emision lines and the presence of LiI in absorption at 6708 A, have allowed us to tentatively classify sigma Orionis members as classical or weak-line TTauri stars and substellar analogs. Variability of the H(alpha) line has been investigated and detected in some objects. Based on the K-band infrared excesses and the intensity of H(alpha) emission, we estimate that the minimum disk frequency of the sigma Orionis low-mass population is in the range 5-12%.
By collecting optical and infrared photometry and low resolution spectroscopy, we have identified a large number of low mass stars and brown dwarf candidates belonging to the young cluster (~5 Myr) associated with the binary star lambda Orionis. The lowest mass object found is a M8.5 with an estimated mass of 0.02 Msun (~0.01 Msun for objects without spectroscopic confirmation). For those objects with spectroscopy, the measured strength of the Halpha emission line follows a distribution similar to other clusters with the same age range, with larger equivalent widths for cooler spectral types. Three of the brown dwarfs have Halpha emission equivalent widths of order 100 AA, suggestive that they may have accretion disks and thus are the substellar equivalent of Classical T Tauri stars. We have derived the Initial Mass Function for the cluster. For the substellar regime, the index of the mass spectrum is alpha=0.60$+-0.06, very similar to other young associations.
141 - E. R. Carrasco 2000
We present V and I CCD photometry of suspected low-surface brightness dwarf galaxies detected in a survey covering ~2.4 deg^2 around the central region of the Dorado group of galaxies. The low-surface brightness galaxies were chosen based on their si zes and magnitudes at the limiting isophote of 26.0Vmu. The selected galaxies have magnitudes brighter than V=20 (Mv=-11 for an assumed distance to the group of 17.2 Mpc), with central surface brightnesses mu0>22.5 V mag/arcsec^2, scale lengths h>2, and diameters > 14 at the limiting isophote. Using these criteria, we identified 69 dwarf galaxy candidates. Four of them are large very low-surface brightness galaxies that were detected on a smoothed image, after masking high surface brightness objects. Monte Carlo simulations performed to estimate completeness, photometric uncertainties and to evaluate our ability to detect extended low-surface brightness galaxies show that the completeness fraction is, on average, > 80% for dwarf galaxies with $-17<M_{V}<-10.5$ and 22.5<mu0<25.5 V mag/arcsec^2, for the range of sizes considered by us (D>14). The V-I colors of the dwarf candidates vary from -0.3 to 2.3 with a peak on V-I=0.98, suggesting a range of different stellar populations in these galaxies. The projected surface density of the dwarf galaxies shows a concentration towards the group center similar in extent to that found around five X-ray groups and the elliptical galaxy NGC1132 studied by Mulchaey and Zabludoff (1999), suggesting that the dwarf galaxies in Dorado are probably physically associated with the overall potential well of the group.
With the purpose to investigate the radio emission of new ultracool objects, we carried out a targeted search in the recently discovered system VHS J125601.92$-$125723.9 (hereafter VHS 1256$-$1257); this system is composed by an equal-mass M7.5 binar y and a L7 low-mass substellar object located at only 15.8,pc. We observed in phase-reference mode the system VHS 1256$-$1257 with the Karl G. Jansky Very Large Array at $X$- and $L$- band and with the European VLBI Network at $L$-band in several epochs during 2015 and 2016. We discovered radio emission at $X$-band spatially coincident with the equal-mass M7.5 binary with a flux density of 60 $mu$Jy. We determined a spectral index $alpha = -1.1 pm 0.3$ between 8 and 12 GHz, suggesting that non-thermal, optically-thin, synchrotron or gyrosynchrotron radiation is responsible for the observed radio emission. Interestingly, no signal is seen at $L$-band where we set a 3-$sigma$ upper limit of 20 $mu$Jy. This might be explained by strong variability of the binary or self-absorption at this frequency. By adopting the latter scenario and gyrosynchrotron radiation, we constrain the turnover frequency to be in the interval 5--8.5 GHz, from which we infer the presence of kG-intense magnetic fields in the M7.5 binary. Our data impose a 3-$sigma$ upper bound to the radio flux density of the L7 object of 9 $mu$Jy at 10,GHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا