ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the substellar temperature regime down to ~550K

48   0   0.0 ( 0 )
 نشر من قبل Benjamin Burningham
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of three very late T dwarfs in the UKIRT Infrared Deep Sky Survey (UKIDSS) Third Data Release: ULAS J101721.40+011817.9 (ULAS1017), ULAS J123828.51+095351.3 (ULAS1238) and ULAS J133553.45+113005.2 (ULAS1335).We detail optical and near-infrared photometry for all three sources, and mid-infrared photometry for ULAS1335. We use near-infrared spectra of each source to assign spectral types T8p (ULAS1017), T8.5 (ULAS1228) and T9 (ULAS1335) to these objects. We estimate that ULAS1017 has 750 < Teff < 850K, and 5.0 < log g < 5.5, assuming solar metallicity, an age of 1.6-15 Gyr, a mass of 33-70 MJ and lies at a distance of 31-54 pc. We extend the unified scheme of Burgasser et al. (2006) to the type T9 and suggest the inclusion of the WJ index to replace the now saturated J-band indices. ULAS1335 is the same spectral type as ULAS J003402.77-005206.7 and CFBDS J005910.90-011401.3. Comparison of model spectra with that of ULAS1335 suggest a temperature below 600K. We find ULAS1335 to be extremely red in near to mid-infrared colours, with H-[4.49]=4.34+/-0.04. This is the reddest near to mid-infrared colour yet observed for a T dwarf, which supports Teff < 600K, and we estimate Teff ~550-600K for ULAS1335. We estimate that ULAS1335 has an age of 0.6-5.3 Gyr, a mass of 15-31 MJ and lies at a distance of 8-12 pc.

قيم البحث

اقرأ أيضاً

126 - Adam J. Burgasser 2008
Ultracool subdwarfs are low luminosity, late-type M and L dwarfs that exhibit spectroscopic indications of subsolar metallicity and halo kinematics. Their recent discovery and ongoing investigation have led to new insights into the role of metallicit y in the opacity structure, chemistry (e.g. dust formation) and evolution of low-temperature atmospheres; the long-term evolution of magnetic activity and angular momentum amongst the lowest-mass stars; the form of the halo luminosity and mass functions down to the hydrogen-burning mass limit; and even fundamental issues such as spectral classification and absolute brightness scales. This Splinter Session was devoted to bringing advances in observational and theoretical ultracool subdwarf research to the attention of the low-mass stellar and brown dwarf communities, as well as to share results among ultracool subdwarf enthusiasts.
184 - Eduardo L. Martin 2000
One of the main scientific drivers of the Space InfraRed Telescope Facility (SIRTF) is the search for brown dwarfs and extrasolar superplanets. We discuss observational strategies for identification of these objects, and conclude that an optimal stra tegy is a wide IRAC survey (18 deg$^2$) with a 5 $sigma$ sensitivity of 3.9 $mu$Jy in channel 2 (M$sim19.1^m$). For this sensitivity, we provide estimates of the number of low mass brown dwarfs and isolated planets detected per square degree for power-law mass functions with $alpha$=1.5, and 1.0. Shallower surveys covering a larger area are inefficient because of large overheads and detector noise. Deeper surveys covering a smaller area become more and more affected by crowding with galaxies. A survey like the one that we propose would determine the field mass function down to a few Jupiter masses through the identification of a large sample of brown dwarfs and isolated planets. The proposed SIRTF survey would also allow the first detection of ultracool substellar objects with temperatures between 700 K and 200 K. The cooling curves of substellar objects with masses less than 20 Jupiters imply that they should spend most of their lifetimes at temperatures below 700 K. Preliminary models indicate that their atmospheres could be dominated by water clouds, which would diminish their optical and near-infrared fluxes. The properties of those objects are still completely unexplored.
289 - P.R. Allen 2003
We predict near-infrared luminosity functions of young (5 Myr to 1 Gyr) star clusters by combining evolutionary models of very low-mass ($1 M_J$ to $0.15 M_{odot}$) dwarfs with empirical bolometric corrections. We identify several characteristic feat ures in our results. These can be attributed to three causes: (1) deuterium burning in the most massive substellar objects; (2) methane absorption in bodies with $T_{eff}$ less than 1300 K, the temperature of the L/T transition; and (3) the formation of dust clouds and the rainout of dust at roughly the same effective temperature as methane formation. Accurate reconstruction of the substellar mass function from luminosity function observations requires that these phenomena are taken into account. At present, few observational studies extend to sufficient sensitivities to allow detection of these effects. However, the luminosity function of the young open cluster IC 2391 shows a clear peak at $M_I sim 14$ which we attribute to the result of deuterium burning in substellar objects. The location of this feature is a strong function of age, and we estimate an age of 35 Myr for IC 2391. This is significantly younger than the 53 Myr derived from the location of the lithium depletion boundary but agrees with the main sequence turnoff age. We consider the implications of this result and our multi-band luminosity functions for future observational studies. All predicted luminosity function features are, or will be, accessible to observations using new wide-field IR imagers and the Space Infrared Telescope Facility.
We have observed the protoplanetary disk of the well-known young Herbig star HD 142527 using ZIMPOL Polarimetric Differential Imaging with the VBB (Very Broad Band, ~600-900nm) filter. We obtained two datasets in May 2015 and March 2016. Our data all ow us to explore dust scattering around the star down to a radius of ~0.025 (~4au). The well-known outer disk is clearly detected, at higher resolution than before, and shows previously unknown sub-structures, including spirals going inwards into the cavity. Close to the star, dust scattering is detected at high signal-to-noise ratio, but it is unclear whether the signal represents the inner disk, which has been linked to the two prominent local minima in the scattering of the outer disk, interpreted as shadows. An interpretation of an inclined inner disk combined with a dust halo is compatible with both our and previous observations, but other arrangements of the dust cannot be ruled out. Dust scattering is also present within the large gap between ~30 and ~140au. The comparison of the two datasets suggests rapid evolution of the inner regions of the disk, potentially driven by the interaction with the close-in M-dwarf companion, around which no polarimetric signal is detected.
Context. Brown dwarfs represent a sizable fraction of the stellar content of our Galaxy and populate the transition between the stellar and planetary mass regime. There is however no agreement on the processes responsible for their formation. Aims. W e have conducted a large survey of the young, nearby cluster IC 348, to uncover its low-mass brown dwarf population and study the cluster properties in the substellar regime. Methods. Deep optical and near-IR images taken with MegaCam and WIRCam at the Canada-France-Hawaii Telescope (CFHT) were used to select photometric candidate members. A spectroscopic follow-up of a large fraction of the candidates was conducted to assess their youth and membership. Results. We confirmed spectroscopically 16 new members of the IC 348 cluster, including 13 brown dwarfs, contributing significantly to the substellar census of the cluster, where only 30 brown dwarfs were previously known. Five of the new members have a L0 spectral type, the latest-type objects found to date in this cluster. At 3 Myr, evolutionary models estimate these brown dwarfs to have a mass of ~13 Jupiter masses. Combining the new members with previous census of the cluster, we constructed the IMF complete down to 13 Jupiter masses. Conclusions. The IMF of IC 348 is well fitted by a log-normal function, and we do not see evidence for variations of the mass function down to planetary masses when compared to other young clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا