ترغب بنشر مسار تعليمي؟ اضغط هنا

Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals

399   0   0.0 ( 0 )
 نشر من قبل Murray McCutcheon
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A photonic crystal nanocavity with a Quality (Q) factor of 2.3 x 10^5, a mode volume of 0.55($lambda/n$)^3, and an operating wavelength of 637 nm is designed in a silicon nitride (SiN_x) ridge waveguide with refractive index of 2.0. The effect on the cavity Q factor and mode volume of single diamond nanocrystals of various sizes and locations embedded in the center and on top of the nanocavity is simulated, demonstrating that Q > 2 x 10^5 is achievable for realistic parameters. An analysis of the figures of merit for cavity quantum electrodynamics reveals that strong coupling between an embedded diamond nitrogen-vacancy center and the cavity mode is achievable for a range of cavity dimensions.



قيم البحث

اقرأ أيضاً

By patterning a freestanding dielectric membrane into a photonic crystal reflector (PCR), it is possible to resonantly enhance its normal-incidence reflectivity, thereby realizing a thin, single-material mirror. In many PCR applications, the operatin g wavelength (e.g. that of a low-noise laser or emitter) is not tunable, imposing tolerances on crystal geometry that are not reliably achieved with standard nanolithography. Here we present a gentle technique to finely tune the resonant wavelength of a SiN PCR using iterative hydrofluoric acid etches. With little optimization, we achieve a 57-nm-thin photonic crystal having an operating wavelength within 0.15 nm (0.04 resonance linewidths) of our target (1550 nm). Our thin structure exhibits a broader and less pronounced transmission dip than is predicted by plane wave simulations, and we identify two effects leading to these discrepancies, both related to the divergence angle of a collimated laser beam. To overcome this limitation in future devices, we distill a series of simulations into a set of general design considerations for realizing robust, high-reflectivity resonances.
We investigate the design, fabrication and experimental characterization of high Quality factor photonic crystal nanobeam cavities in silicon. Using a five-hole tapered 1D photonic crystal mirror and precise control of the cavity length, we designed cavities with theoretical Quality factors as high as 14 million. By detecting the cross-polarized resonantly scattered light from a normally incident laser beam, we measure a Quality factor of nearly 750,000. The effect of cavity size on mode frequency and Quality factor was simulated and then verified experimentally.
One dimensional nanobeam photonic crystal cavities are fabricated in silicon dioxide with silicon nanocrystals. Quality factors of over 9 x 10^3 are found in experiment, matching theoretical predictions, with mode volumes of 1.5(lambda/n)^3 . Photolu minescence from the cavity modes is observed in the visible wavelength range 600-820 nm. Studies of the lossy characteristics of the cavities are conducted at varying temperatures and pump powers. Free carrier absorption effects are found to be significant at pump powers as low as a few hundred nanowatts.
117 - Ying Li , Jiangjun Zheng , Jie Gao 2010
We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on a mode-gap photonic crystal cavities with light localization in an air mode with 0.02(lambda/n)3 mo dal volumes while preserving optical cavity Q up to 5 x 106. The mechanical mode is modeled to have fundamental resonance omega_m/2pi of 460 MHz and a quality factor Qm estimated at 12,000. For this slot-type optomechanical cavity, the dispersive coupling gom is numerically computed at up to 940 GHz/nm (Lom of 202 nm) for the fundamental optomechanical mode. Dynamical parametric oscillations for both cooling and amplification, in the resolved and unresolved sideband limit, are examined numerically, along with the displacement spectral density and cooling rates for the various operating parameters.
Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elus ive due to the complexities associated with current injection into cavities. A fabrication procedure for electrically pumping photonic crystal membrane devices using a lateral p-i-n junction has been developed and is described in this work. We have demonstrated electrically pumped lasing in our junctions with a threshold of 181 nA at 50K - the lowest threshold ever demonstrated in an electrically pumped laser. At room temperature we find that our devices behave as single-mode light-emitting diodes (LEDs), which when directly modulated, have an ultrafast electrical response up to 10 GHz corresponding to less than 1 fJ/bit energy operation - the lowest for any optical transmitter. In addition, we have demonstrated electrical pumping of photonic crystal nanobeam LEDs, and have built fiber taper coupled electro-optic modulators. Fiber-coupled photodetectors based on two-photon absorption are also demonstrated as well as multiply integrated components that can be independently electrically controlled. The presented electrical injection platform is a major step forward in providing practical low power and integrable devices for on-chip photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا