ﻻ يوجد ملخص باللغة العربية
A photonic crystal nanocavity with a Quality (Q) factor of 2.3 x 10^5, a mode volume of 0.55($lambda/n$)^3, and an operating wavelength of 637 nm is designed in a silicon nitride (SiN_x) ridge waveguide with refractive index of 2.0. The effect on the cavity Q factor and mode volume of single diamond nanocrystals of various sizes and locations embedded in the center and on top of the nanocavity is simulated, demonstrating that Q > 2 x 10^5 is achievable for realistic parameters. An analysis of the figures of merit for cavity quantum electrodynamics reveals that strong coupling between an embedded diamond nitrogen-vacancy center and the cavity mode is achievable for a range of cavity dimensions.
By patterning a freestanding dielectric membrane into a photonic crystal reflector (PCR), it is possible to resonantly enhance its normal-incidence reflectivity, thereby realizing a thin, single-material mirror. In many PCR applications, the operatin
We investigate the design, fabrication and experimental characterization of high Quality factor photonic crystal nanobeam cavities in silicon. Using a five-hole tapered 1D photonic crystal mirror and precise control of the cavity length, we designed
One dimensional nanobeam photonic crystal cavities are fabricated in silicon dioxide with silicon nanocrystals. Quality factors of over 9 x 10^3 are found in experiment, matching theoretical predictions, with mode volumes of 1.5(lambda/n)^3 . Photolu
We describe the strong optomechanical dynamical interactions in ultrahigh-Q/V slot-type photonic crystal cavities. The dispersive coupling is based on a mode-gap photonic crystal cavities with light localization in an air mode with 0.02(lambda/n)3 mo
Interest in photonic crystal nanocavities is fueled by advances in device performance, particularly in the development of low-threshold laser sources. Effective electrical control of high performance photonic crystal lasers has thus far remained elus